Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
78 result(s) for "Trojovský, Pavel"
Sort by:
Hybrid leader based optimization: a new stochastic optimization algorithm for solving optimization applications
In this paper, a new optimization algorithm called hybrid leader-based optimization (HLBO) is introduced that is applicable in optimization challenges. The main idea of HLBO is to guide the algorithm population under the guidance of a hybrid leader. The stages of HLBO are modeled mathematically in two phases of exploration and exploitation. The efficiency of HLBO in optimization is tested by finding solutions to twenty-three standard benchmark functions of different types of unimodal and multimodal. The optimization results of unimodal functions indicate the high exploitation ability of HLBO in local search for better convergence to global optimal, while the optimization results of multimodal functions show the high exploration ability of HLBO in global search to accurately scan different areas of search space. In addition, the performance of HLBO on solving IEEE CEC 2017 benchmark functions including thirty objective functions is evaluated. The optimization results show the efficiency of HLBO in handling complex objective functions. The quality of the results obtained from HLBO is compared with the results of ten well-known algorithms. The simulation results show the superiority of HLBO in convergence to the global solution as well as the passage of optimally localized areas of the search space compared to ten competing algorithms. In addition, the implementation of HLBO on four engineering design issues demonstrates the applicability of HLBO in real-world problem solving.
Pelican Optimization Algorithm: A Novel Nature-Inspired Algorithm for Engineering Applications
Optimization is an important and fundamental challenge to solve optimization problems in different scientific disciplines. In this paper, a new stochastic nature-inspired optimization algorithm called Pelican Optimization Algorithm (POA) is introduced. The main idea in designing the proposed POA is simulation of the natural behavior of pelicans during hunting. In POA, search agents are pelicans that search for food sources. The mathematical model of the POA is presented for use in solving optimization issues. The performance of POA is evaluated on twenty-three objective functions of different unimodal and multimodal types. The optimization results of unimodal functions show the high exploitation ability of POA to approach the optimal solution while the optimization results of multimodal functions indicate the high ability of POA exploration to find the main optimal area of the search space. Moreover, four engineering design issues are employed for estimating the efficacy of the POA in optimizing real-world applications. The findings of POA are compared with eight well-known metaheuristic algorithms to assess its competence in optimization. The simulation results and their analysis show that POA has a better and more competitive performance via striking a proportional balance between exploration and exploitation compared to eight competitor algorithms in providing optimal solutions for optimization problems.
A new bio-inspired metaheuristic algorithm for solving optimization problems based on walruses behavior
This paper introduces a new bio-inspired metaheuristic algorithm called Walrus Optimization Algorithm (WaOA), which mimics walrus behaviors in nature. The fundamental inspirations employed in WaOA design are the process of feeding, migrating, escaping, and fighting predators. The WaOA implementation steps are mathematically modeled in three phases exploration, migration, and exploitation. Sixty-eight standard benchmark functions consisting of unimodal, high-dimensional multimodal, fixed-dimensional multimodal, CEC 2015 test suite, and CEC 2017 test suite are employed to evaluate WaOA performance in optimization applications. The optimization results of unimodal functions indicate the exploitation ability of WaOA, the optimization results of multimodal functions indicate the exploration ability of WaOA, and the optimization results of CEC 2015 and CEC 2017 test suites indicate the high ability of WaOA in balancing exploration and exploitation during the search process. The performance of WaOA is compared with the results of ten well-known metaheuristic algorithms. The results of the simulations demonstrate that WaOA, due to its excellent ability to balance exploration and exploitation, and its capacity to deliver superior results for most of the benchmark functions, has exhibited a remarkably competitive and superior performance in contrast to other comparable algorithms. In addition, the use of WaOA in addressing four design engineering issues and twenty-two real-world optimization problems from the CEC 2011 test suite demonstrates the apparent effectiveness of WaOA in real-world applications. The MATLAB codes of WaOA are available in https://uk.mathworks.com/matlabcentral/profile/authors/13903104 .
A new human-based metaheuristic algorithm for solving optimization problems based on preschool education
In this paper, with motivation from the No Free Lunch theorem, a new human-based metaheuristic algorithm named Preschool Education Optimization Algorithm (PEOA) is introduced for solving optimization problems. Human activities in the preschool education process are the fundamental inspiration in the design of PEOA. Hence, PEOA is mathematically modeled in three phases: (i) the gradual growth of the preschool teacher's educational influence, (ii) individual knowledge development guided by the teacher, and (iii) individual increase of knowledge and self-awareness. The PEOA's performance in optimization is evaluated using fifty-two standard benchmark functions encompassing unimodal, high-dimensional multimodal, and fixed-dimensional multimodal types, as well as the CEC 2017 test suite. The optimization results show that PEOA has a high ability in exploration–exploitation and can balance them during the search process. To provide a comprehensive analysis, the performance of PEOA is compared against ten well-known metaheuristic algorithms. The simulation results show that the proposed PEOA approach performs better than competing algorithms by providing effective solutions for the benchmark functions and overall ranking as the first-best optimizer. Presenting a statistical analysis of the Wilcoxon signed-rank test shows that PEOA has significant statistical superiority in competition with compared algorithms. Furthermore, the implementation of PEOA in solving twenty-two optimization problems from the CEC 2011 test suite and four engineering design problems illustrates its efficacy in real-world optimization applications.
Subtraction-Average-Based Optimizer: A New Swarm-Inspired Metaheuristic Algorithm for Solving Optimization Problems
This paper presents a new evolutionary-based approach called a Subtraction-Average-Based Optimizer (SABO) for solving optimization problems. The fundamental inspiration of the proposed SABO is to use the subtraction average of searcher agents to update the position of population members in the search space. The different steps of the SABO’s implementation are described and then mathematically modeled for optimization tasks. The performance of the proposed SABO approach is tested for the optimization of fifty-two standard benchmark functions, consisting of unimodal, high-dimensional multimodal, and fixed-dimensional multimodal types, and the CEC 2017 test suite. The optimization results show that the proposed SABO approach effectively solves the optimization problems by balancing the exploration and exploitation in the search process of the problem-solving space. The results of the SABO are compared with the performance of twelve well-known metaheuristic algorithms. The analysis of the simulation results shows that the proposed SABO approach provides superior results for most of the benchmark functions. Furthermore, it provides a much more competitive and outstanding performance than its competitor algorithms. Additionally, the proposed approach is implemented for four engineering design problems to evaluate the SABO in handling optimization tasks for real-world applications. The optimization results show that the proposed SABO approach can solve for real-world applications and provides more optimal designs than its competitor algorithms.
Teamwork Optimization Algorithm: A New Optimization Approach for Function Minimization/Maximization
Population-based optimization algorithms are one of the most widely used and popular methods in solving optimization problems. In this paper, a new population-based optimization algorithm called the Teamwork Optimization Algorithm (TOA) is presented to solve various optimization problems. The main idea in designing the TOA is to simulate the teamwork behaviors of the members of a team in order to achieve their desired goal. The TOA is mathematically modeled for usability in solving optimization problems. The capability of the TOA in solving optimization problems is evaluated on a set of twenty-three standard objective functions. Additionally, the performance of the proposed TOA is compared with eight well-known optimization algorithms in providing a suitable quasi-optimal solution. The results of optimization of objective functions indicate the ability of the TOA to solve various optimization problems. Analysis and comparison of the simulation results of the optimization algorithms show that the proposed TOA is superior and far more competitive than the eight compared algorithms.
On the Characteristic Polynomial of the Generalized k-Distance Tribonacci Sequences
In 2008, I. Włoch introduced a new generalization of Pell numbers. She used special initial conditions so that this sequence describes the total number of special families of subsets of the set of n integers. In this paper, we prove some results about the roots of the characteristic polynomial of this sequence, but we will consider general initial conditions. Since there are currently several types of generalizations of the Pell sequence, it is very difficult for anyone to realize what type of sequence an author really means. Thus, we will call this sequence the generalized k-distance Tribonacci sequence (Tn(k))n≥0.
A new human-based metaheuristic algorithm for solving optimization problems on the base of simulation of driving training process
In this paper, a new stochastic optimization algorithm is introduced, called Driving Training-Based Optimization (DTBO), which mimics the human activity of driving training. The fundamental inspiration behind the DTBO design is the learning process to drive in the driving school and the training of the driving instructor. DTBO is mathematically modeled in three phases: (1) training by the driving instructor, (2) patterning of students from instructor skills, and (3) practice. The performance of DTBO in optimization is evaluated on a set of 53 standard objective functions of unimodal, high-dimensional multimodal, fixed-dimensional multimodal, and IEEE CEC2017 test functions types. The optimization results show that DTBO has been able to provide appropriate solutions to optimization problems by maintaining a proper balance between exploration and exploitation. The performance quality of DTBO is compared with the results of 11 well-known algorithms. The simulation results show that DTBO performs better compared to 11 competitor algorithms and is more efficient in optimization applications.
Deep learning model for deep fake face recognition and detection
Deep Learning is an effective technique and used in various fields of natural language processing, computer vision, image processing and machine vision. Deep fakes uses deep learning technique to synthesis and manipulate image of a person in which human beings cannot distinguish the fake one. By using generative adversarial neural networks (GAN) deep fakes are generated which may threaten the public. Detecting deep fake image content plays a vital role. Many research works have been done in detection of deep fakes in image manipulation. The main issues in the existing techniques are inaccurate, consumption time is high. In this work we implement detecting of deep fake face image analysis using deep learning technique of fisherface using Local Binary Pattern Histogram (FF-LBPH). Fisherface algorithm is used to recognize the face by reduction of the dimension in the face space using LBPH. Then apply DBN with RBM for deep fake detection classifier. The public data sets used in this work are FFHQ, 100K-Faces DFFD, CASIA-WebFace.
Cat and Mouse Based Optimizer: A New Nature-Inspired Optimization Algorithm
Numerous optimization problems designed in different branches of science and the real world must be solved using appropriate techniques. Population-based optimization algorithms are some of the most important and practical techniques for solving optimization problems. In this paper, a new optimization algorithm called the Cat and Mouse-Based Optimizer (CMBO) is presented that mimics the natural behavior between cats and mice. In the proposed CMBO, the movement of cats towards mice as well as the escape of mice towards havens is simulated. Mathematical modeling and formulation of the proposed CMBO for implementation on optimization problems are presented. The performance of the CMBO is evaluated on a standard set of objective functions of three different types including unimodal, high-dimensional multimodal, and fixed-dimensional multimodal. The results of optimization of objective functions show that the proposed CMBO has a good ability to solve various optimization problems. Moreover, the optimization results obtained from the CMBO are compared with the performance of nine other well-known algorithms including Genetic Algorithm (GA), Particle Swarm Optimization (PSO), Gravitational Search Algorithm (GSA), Teaching-Learning-Based Optimization (TLBO), Grey Wolf Optimizer (GWO), Whale Optimization Algorithm (WOA), Marine Predators Algorithm (MPA), Tunicate Swarm Algorithm (TSA), and Teamwork Optimization Algorithm (TOA). The performance analysis of the proposed CMBO against the compared algorithms shows that CMBO is much more competitive than other algorithms by providing more suitable quasi-optimal solutions that are closer to the global optimal.