Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
11
result(s) for
"Trondman, Anna-Kari"
Sort by:
Spatially Continuous Land-Cover Reconstructions Through the Holocene in Southern Sweden
by
Jönsson, Anna Maria
,
Trondman, Anna-Kari
,
Marquer, Laurent
in
afforestation
,
Agricultural land
,
Algorithms
2021
Climate change and human activities influence the development of ecosystems, with human demand of ecosystem services altering both land use and land cover. Fossil pollen records provide time series of vegetation characteristics, and the aim of this study was to create spatially continuous reconstructions of land cover through the Holocene in southern Sweden. The Landscape Reconstruction Algorithm (LRA) was applied to obtain quantitative reconstructions of pollen-based vegetation cover at local scales, accounting for pollen production, dispersal, and deposition mechanisms. Pollen-based local vegetation estimates were produced from 41 fossil pollen records available for the region. A comparison of 17 interpolation methods was made and evaluated by comparing with current land cover. Simple kriging with cokriging using elevation was selected to interpolate the local characteristics of past land cover, to generate more detailed reconstructions of trends and degree of variability in time and space than previous studies based on pollen data representing the regional scale. Since the Mesolithic, two main processes have acted to reshape the land cover of southern Sweden, originally mostly covered by broad-leaved forests. The natural distribution limit of coniferous forest has moved southward during periods with colder climate and retracted northward during warmer periods, and human expansion in the area and agrotechnological developments has led to a gradually more open landscape, reaching maximum openness at the beginning of the 20th century. The recent intensification of agriculture has led to abandonment of less fertile agricultural fields and afforestation with conifer forest.
Journal Article
The role of climate, forest fires and human population size in Holocene vegetation dynamics in Fennoscandia
by
Zhang, Yurui
,
Trondman, Anna-Kari
,
Alenius, Teija
in
Agrarian society
,
Agricultural and Veterinary sciences
,
Annan lantbruksvetenskap
2018
Questions: We investigated the changing role of climate, forest fires and human population size in the broad-scale compositional changes in Holocene vegetation dynamics before and after the onset of farming in Sweden (at 6,000 cal yr BP) and in Finland (at 4,000 cal yr BP). Location: Southern and central Sweden, SW and SE Finland. Methods: Holocene regional plant abundances were reconstructed using the REVEALS model on selected fossil pollen records from lakes. The relative importance of climate, fires and human population size on changes in vegetation composition was assessed using variation partitioning. Past climate variable was derived from the LOVECLIM climate model. Fire variable was reconstructed from sedimentary charcoal records. Estimated trend in human population size was based on the temporal distribution of archaeological radiocarbon dates. Results: Climate explains the highest proportion of variation in vegetation composition during the whole study period in Sweden (10,000–4,000 cal yr BP) and in Finland (10,000–1,000 cal yr BP), and during the pre-agricultural period. In general, fires explain a relatively low proportion of variation. Human population size has significant effect on vegetation dynamics after the onset of farming and explains the highest variation in vegetation in S Sweden and SW Finland. Conclusions: Mesolithic hunter-gatherer populations did not significantly affect vegetation composition in Fennoscandia, and climate was the main driver of changes at that time. Agricultural communities, however, had greater effect on vegetation dynamics, and the role of human population size became a more important factor during the late Holocene. Our results demonstrate that climate can be considered the main driver of long-term vegetation dynamics in Fennoscandia. However, in some regions the influence of human population size on Holocene vegetation changes exceeded that of climate and has a longevity dating to the early Neolithic.
Journal Article
Constraining the Deforestation History of Europe: Evaluation of Historical Land Use Scenarios with Pollen-Based Land Cover Reconstructions
by
Trondman, Anna-Kari
,
Kaplan, Jed
,
Fyfe, Ralph
in
Agricultural and Veterinary sciences
,
Annan lantbruksvetenskap
,
Anthropogenic factors
2017
Anthropogenic land cover change (ALCC) is the most important transformation of the Earth system that occurred in the preindustrial Holocene, with implications for carbon, water and sediment cycles, biodiversity and the provision of ecosystem services and regional and global climate. For example, anthropogenic deforestation in preindustrial Eurasia may have led to feedbacks to the climate system: both biogeophysical, regionally amplifying winter cold and summer warm temperatures, and biogeochemical, stabilizing atmospheric CO 2 concentrations and thus influencing global climate. Quantification of these effects is difficult, however, because scenarios of anthropogenic land cover change over the Holocene vary widely, with increasing disagreement back in time. Because land cover change had such widespread ramifications for the Earth system, it is essential to assess current ALCC scenarios in light of observations and provide guidance on which models are most realistic. Here, we perform a systematic evaluation of two widely-used ALCC scenarios (KK10 and HYDE3.1) in northern and part of central Europe using an independent, pollen-based reconstruction of Holocene land cover (REVEALS). Considering that ALCC in Europe primarily resulted in deforestation, we compare modeled land use with the cover of non-forest vegetation inferred from the pollen data. Though neither land cover change scenario matches the pollen-based reconstructions precisely, KK10 correlates well with REVEALS at the country scale, while HYDE systematically underestimates land use with increasing magnitude with time in the past. Discrepancies between modeled and reconstructed land use are caused by a number of factors, including assumptions of per-capita land use and socio-cultural factors that cannot be predicted on the basis of the characteristics of the physical environment, including dietary preferences, long-distance trade, the location of urban areas and social organization.
Journal Article
Are pollen records from small sites appropriate for REVEALS model-based quantitative reconstructions of past regional vegetation? An empirical test in southern Sweden
2016
In this paper we test the performance of the Regional Estimates of VEgetation Abundance from Large Sites (REVEALS) model using pollen records from multiple small sites. We use Holocene pollen records from large and small sites in southern Sweden to identify what is/are the most significant variable(s) affecting the REVEALS-based reconstructions, i.e. type of site (lakes and/or bogs), number of sites, site size, site location in relation to vegetation zones, and/or distance between small sites and large sites. To achieve this objective we grouped the small sites according to (i) the two major modern vegetation zones of the study region, and (ii) the distance between the small sites and large lakes, i.e. small sites within 50, 100, 150, or 200 km of the large lakes. The REVEALS-based reconstructions were performed using 24 pollen taxa. Redundancy analysis was performed on the results from all REVEALS-model runs using the groups within (i) and (ii) separately, and on the results from all runs using the groups within (ii) together. The explanatory power and significance of the variables were identified using forward selection and Monte Carlo permutation tests. The results show that (a) although the REVEALS model was designed for pollen data from large lakes, it also performs well with pollen data from multiple small sites in reconstructing the percentage cover of groups of plant taxa (e.g. open land taxa, summer-green trees, evergreen trees) or individual plant taxa; however, in the case of this study area, the reconstruction of the percentage cover of Calluna vulgaris, Cyperaceae, and Betula may be problematic when using small bogs; (b) standard errors of multiple small-site REVEALS estimates will generally be larger than those obtained using pollen records from large lakes, and they will decrease with increasing size of pollen counts and increasing number of small sites; (c) small lakes are better to use than small bogs if the total number of small sites is low; and (d) the size of small sites and the distance between them do not play a major role, but the distance between the small sites and landscape/vegetation boundaries is a determinant factor for the accuracy of the vegetation reconstructions.
Journal Article
European pollen-based REVEALS land-cover reconstructions for the Holocene: methodology, mapping and potentials
by
Poska, Anneli
,
Tonkov, Spassimir
,
Githumbi, Esther
in
Archaeology and Prehistory
,
Biodiversity and Ecology
,
Biogeochemistry
2022
Quantitative reconstructions of past land cover are necessary to determine the processes involved in climate–human–land-cover interactions. We present the first temporally continuous and most spatially extensive pollen-based land-cover reconstruction for Europe over the Holocene (last 11 700 cal yr BP). We describe how vegetation cover has been quantified from pollen records at a 1∘ × 1∘ spatial scale using the “Regional Estimates of VEgetation Abundance from Large Sites” (REVEALS) model. REVEALS calculates estimates of past regional vegetation cover in proportions or percentages. REVEALS has been applied to 1128 pollen records across Europe and part of the eastern Mediterranean–Black Sea–Caspian corridor (30–75∘ N, 25∘ W–50∘ E) to reconstruct the percentage cover of 31 plant taxa assigned to 12 plant functional types (PFTs) and 3 land-cover types (LCTs). A new synthesis of relative pollen productivities (RPPs) for European plant taxa was performed for this reconstruction. It includes multiple RPP values (≥2 values) for 39 taxa and single values for 15 taxa (total of 54 taxa). To illustrate this, we present distribution maps for five taxa (Calluna vulgaris, Cerealia type (t)., Picea abies, deciduous Quercus t. and evergreen Quercus t.) and three land-cover types (open land, OL; evergreen trees, ETs; and summer-green trees, STs) for eight selected time windows. The reliability of the REVEALS reconstructions and issues related to the interpretation of the results in terms of landscape openness and human-induced vegetation change are discussed. This is followed by a review of the current use of this reconstruction and its future potential utility and development. REVEALS data quality are primarily determined by pollen count data (pollen count and sample, pollen identification, and chronology) and site type and number (lake or bog, large or small, one site vs. multiple sites) used for REVEALS analysis (for each grid cell). A large number of sites with high-quality pollen count data will produce more reliable land-cover estimates with lower standard errors compared to a low number of sites with lower-quality pollen count data. The REVEALS data presented here can be downloaded from https://doi.org/10.1594/PANGAEA.937075 (Fyfe et al., 2022).
Journal Article
Europe’s lost forests: a pollen-based synthesis for the last 11,000 years
by
Roberts, N.
,
Leydet, M.
,
Trondman, A.-K.
in
704/158/2462
,
704/158/852
,
Agricultural and Veterinary sciences
2018
8000 years ago, prior to Neolithic agriculture, Europe was mostly a wooded continent. Since then, its forest cover has been progressively fragmented, so that today it covers less than half of Europe’s land area, in many cases having been cleared to make way for fields and pasture-land. Establishing the origin of Europe’s current, more open land-cover mosaic requires a long-term perspective, for which pollen analysis offers a key tool. In this study we utilise and compare three numerical approaches to transforming pollen data into past forest cover, drawing on >1000
14
C-dated site records. All reconstructions highlight the different histories of the mixed temperate and the northern boreal forests, with the former declining progressively since ~6000 years ago, linked to forest clearance for agriculture in later prehistory (especially in northwest Europe) and early historic times (e.g. in north central Europe). In contrast, extensive human impact on the needle-leaf forests of northern Europe only becomes detectable in the last two millennia and has left a larger area of forest in place. Forest loss has been a dominant feature of Europe’s landscape ecology in the second half of the current interglacial, with consequences for carbon cycling, ecosystem functioning and biodiversity.
Journal Article
Regional climate model simulations for Europe at 6 and 0.2 k BP: sensitivity to changes in anthropogenic deforestation
by
Kaplan, J. O.
,
Marquer, L.
,
Seppä, H.
in
Analysis
,
atmosfärvetenskap och oceanografi
,
Atmospheric Sciences and Oceanography
2014
This study aims to evaluate the direct effects of anthropogenic deforestation on simulated climate at two contrasting periods in the Holocene, ~6 and ~0.2 k BP in Europe. We apply We apply the Rossby Centre regional climate model RCA3, a regional climate model with 50 km spatial resolution, for both time periods, considering three alternative descriptions of the past vegetation: (i) potential natural vegetation (V) simulated by the dynamic vegetation model LPJ-GUESS, (ii) potential vegetation with anthropogenic land use (deforestation) from the HYDE3.1 (History Database of the Global Environment) scenario (V + H3.1), and (iii) potential vegetation with anthropogenic land use from the KK10 scenario (V + KK10). The climate model results show that the simulated effects of deforestation depend on both local/regional climate and vegetation characteristics. At ~6 k BP the extent of simulated deforestation in Europe is generally small, but there are areas where deforestation is large enough to produce significant differences in summer temperatures of 0.5–1 °C. At ~0.2 k BP, extensive deforestation, particularly according to the KK10 model, leads to significant temperature differences in large parts of Europe in both winter and summer. In winter, deforestation leads to lower temperatures because of the differences in albedo between forested and unforested areas, particularly in the snow-covered regions. In summer, deforestation leads to higher temperatures in central and eastern Europe because evapotranspiration from unforested areas is lower than from forests. Summer evaporation is already limited in the southernmost parts of Europe under potential vegetation conditions and, therefore, cannot become much lower. Accordingly, the albedo effect dominates in southern Europe also in summer, which implies that deforestation causes a decrease in temperatures. Differences in summer temperature due to deforestation range from −1 °C in south-western Europe to +1 °C in eastern Europe. The choice of anthropogenic land-cover scenario has a significant influence on the simulated climate, but uncertainties in palaeoclimate proxy data for the two time periods do not allow for a definitive discrimination among climate model results.
Journal Article
Holocene land-cover reconstructions for studies on land cover-climate feedbacks
2010
The major objectives of this paper are: (1) to review the pros and cons of the scenarios of past anthropogenic land cover change (ALCC) developed during the last ten years, (2) to discuss issues related to pollen-based reconstruction of the past land-cover and introduce a new method, REVEALS (Regional Estimates of VEgetation Abundance from Large Sites), to infer long-term records of past land-cover from pollen data, (3) to present a new project (LANDCLIM: LAND cover - CLIMate interactions in NW Europe during the Holocene) currently underway, and show preliminary results of REVEALS reconstructions of the regional land-cover in the Czech Republic for five selected time windows of the Holocene, and (4) to discuss the implications and future directions in climate and vegetation/land-cover modeling, and in the assessment of the effects of human-induced changes in land-cover on the regional climate through altered feedbacks. The existing ALCC scenarios show large discrepancies between them, and few cover time periods older than AD 800. When these scenarios are used to assess the impact of human land-use on climate, contrasting results are obtained. It emphasizes the need for methods such as the REVEALS model-based land-cover reconstructions. They might help to fine-tune descriptions of past land-cover and lead to a better understanding of how long-term changes in ALCC might have influenced climate. The REVEALS model is demonstrated to provide better estimates of the regional vegetation/land-cover changes than the traditional use of pollen percentages. This will achieve a robust assessment of land cover at regional- to continental-spatial scale throughout the Holocene. We present maps of REVEALS estimates for the percentage cover of 10 plant functional types (PFTs) at 200 BP and 6000 BP, and of the two open-land PFTs \"grassland\" and \"agricultural land\" at five time-windows from 6000 BP to recent time. The LANDCLIM results are expected to provide crucial data to reassess ALCC estimates for a better understanding of the land suface-atmosphere interactions.
Journal Article
Are pollen records form small sites appropriate for REVEALS model-based quantitative reconstructions of past regional vegetation ? An empirical test in southern Sweden
2016
In this paper we test the performance of the Regional Estimates of VEgetation Abundance from Large Sites (REVEALS) model using pollen records from multiple small sites. We use Holocene pollen records from large and small sites in southern Sweden to identify what is/are the most significant variable(s) affecting the REVEALS-based reconstructions, i.e. type of site (lakes and/or bogs), number of sites, site size, site location in relation to vegetation zones, and/or distance between small sites and large sites. To achieve this objective we grouped the small sites accordingto (i) the two major modern vegetation zones of the study region, and (ii) the distance between the small sites and large lakes, i.e. small sites within 50, 100, 150, or 200 km of the large lakes. The REVEALS-based reconstructions were performed using 24 pollen taxa. Redundancy analysis was performed on the results from all REVEALS-model runs using the groups within (i) and (ii) separately, and on the results from all runs using the groups within (ii) together. The explanatory power and significance of the variables were identified using forward selection and Monte Carlo permutation tests. The results show that (a) although theREVEALS model was designed for pollen data from large lakes, it also performs well with pollen data from multiple small sites in reconstructing the percentage cover of groups of plant taxa (e.g. open land taxa, summer-green trees, evergreen trees) or individual plant taxa; however, in the case of this study area, the reconstruction of the percentage cover of Calluna vulgaris,Cyperaceae, and Betula may be problematic when using small bogs; (b) standard errors of multiple small-site REVEALS estimates will generally be larger than those obtained using pollen records from large lakes, and they will decrease with increasing size of pollen counts and increasingnumber of small sites; (c) small lakes are better to use than small bogs if the total number of small sites is low; and (d) the size of small sites and the distance between them do not play a major role, but the distance between the small sites and landscape/vegetation boundaries is a determinant factor for the accuracy of the vegetation reconstructions
Journal Article
European pollen-based REVEALS land-cover reconstructions for the Holocene: methodology, mapping and potentials
2022
Quantitative reconstructions of past land cover are necessary to determine the processes involved in climate–human–land-cover interactions. We present the first temporally continuous and most spatially extensive pollen-based land-cover reconstruction for Europe over the Holocene (last 11 700 cal yr BP). We describe how vegetation cover has been quantified from pollen records at a 1∘ × 1∘ spatial scale using the “Regional Estimates of VEgetation Abundance from Large Sites” (REVEALS) model. REVEALS calculates estimates of past regional vegetation cover in proportions or percentages. REVEALS has been applied to 1128 pollen records across Europe and part of the eastern Mediterranean–Black Sea–Caspian corridor (30–75∘ N, 25∘ W–50∘ E) to reconstruct the percentage cover of 31 plant taxa assigned to 12 plant functional types (PFTs) and 3 land-cover types (LCTs). A new synthesis of relative pollen productivities (RPPs) for European plant taxa was performed for this reconstruction. It includes multiple RPP values (≥2 values) for 39 taxa and single values for 15 taxa (total of 54 taxa). To illustrate this, we present distribution maps for five taxa (Calluna vulgaris, Cerealia type (t)., Picea abies, deciduous Quercus t. and evergreen Quercus t.) and three land-cover types (open land, OL; evergreen trees, ETs; and summer-green trees, STs) for eight selected time windows. The reliability of the REVEALS reconstructions and issues related to the interpretation of the results in terms of landscape openness and human-induced vegetation change are discussed. This is followed by a review of the current use of this reconstruction and its future potential utility and development. REVEALS data quality are primarily determined by pollen count data (pollen count and sample, pollen identification, and chronology) and site type and number (lake or bog, large or small, one site vs. multiple sites) used for REVEALS analysis (for each grid cell). A large number of sites with high-quality pollen count data will produce more reliable land-cover estimates with lower standard errors compared to a low number of sites with lower-quality pollen count data. The REVEALS data presented here can be downloaded from https://doi.org/10.1594/PANGAEA.937075 (Fyfe et al., 2022).
Journal Article