Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
36
result(s) for
"Truan, Gilles"
Sort by:
Multiplicity of carotene patterns derives from competition between phytoene desaturase diversification and biological environments
2020
Phytoene desaturases catalyse from two to six desaturation reactions on phytoene, generating a large diversity of molecules that can then be cyclised and produce, depending on the organism, many different carotenoids. We constructed a phylogenetic tree of a subset of phytoene desaturases from the CrtI family for which functional data was available. We expressed in a bacterial system eight codon optimized CrtI enzymes from different clades. Analysis of the phytoene desaturation reactions on crude extracts showed that three CrtI enzymes can catalyse up to six desaturations, forming tetradehydrolycopene. Kinetic data generated using a subset of five purified enzymes demonstrate the existence of characteristic patterns of desaturated molecules associated with various CrtI clades. The kinetic data was also analysed using a classical Michaelis–Menten kinetic model, showing that variations in the reaction rates and binding constants could explain the various carotene patterns observed. Competition between lycopene cyclase and the phytoene desaturases modified the distribution between carotene intermediates when expressed in yeast in the context of the full
β
-carotene production pathway. Our results demonstrate that the desaturation patterns of carotene molecules in various biological environments cannot be fully inferred from phytoene desaturases classification but is governed both by evolutionary-linked variations in the desaturation rates and competition between desaturation and cyclisation steps.
Journal Article
Ligand Access Channels in Cytochrome P450 Enzymes: A Review
by
Pompon, Denis
,
Centre de génétique moléculaire (CGM) ; Centre National de la Recherche Scientifique (CNRS)
,
Urban, Philippe
in
Animals
,
Binding Sites
,
Cytochrome
2018
Quantitative structure-activity relationships may bring invaluable information on structural elements of both enzymes and substrates that, together, govern substrate specificity. Buried active sites in cytochrome P450 enzymes are connected to the solvent by a network of channels exiting at the distal surface of the protein. This review presents different in silico tools that were developed to uncover such channels in P450 crystal structures. It also lists some of the experimental evidence that actually suggest that these predicted channels might indeed play a critical role in modulating P450 functions. Amino acid residues at the entrance of the channels may participate to a first global ligand recognition of ligands by P450 enzymes before they reach the buried active site. Moreover, different P450 enzymes show different networks of predicted channels. The plasticity of P450 structures is also important to take into account when looking at how channels might play their role.
Journal Article
The Promise of Optogenetics for Bioproduction: Dynamic Control Strategies and Scale-Up Instruments
2020
Progress in metabolic engineering and synthetic and systems biology has made bioproduction an increasingly attractive and competitive strategy for synthesizing biomolecules, recombinant proteins and biofuels from renewable feedstocks. Yet, due to poor productivity, it remains difficult to make a bioproduction process economically viable at large scale. Achieving dynamic control of cellular processes could lead to even better yields by balancing the two characteristic phases of bioproduction, namely, growth versus production, which lie at the heart of a trade-off that substantially impacts productivity. The versatility and controllability offered by light will be a key element in attaining the level of control desired. The popularity of light-mediated control is increasing, with an expanding repertoire of optogenetic systems for novel applications, and many optogenetic devices have been designed to test optogenetic strains at various culture scales for bioproduction objectives. In this review, we aim to highlight the most important advances in this direction. We discuss how optogenetics is currently applied to control metabolism in the context of bioproduction, describe the optogenetic instruments and devices used at the laboratory scale for strain development, and explore how current industrial-scale bioproduction processes could be adapted for optogenetics or could benefit from existing photobioreactor designs. We then draw attention to the steps that must be undertaken to further optimize the control of biological systems in order to take full advantage of the potential offered by microbial factories.
Journal Article
The Role of the FMN-Domain of Human Cytochrome P450 Oxidoreductase in Its Promiscuous Interactions With Structurally Diverse Redox Partners
by
Truan, Gilles
,
Bozonnet, Sophie
,
Rueff, José
in
Amino acids
,
binding motifs
,
Biochemistry, Molecular Biology
2020
NADPH cytochrome P450 oxidoreductase (CPR) is the obligatory electron supplier that sustains the activity of microsomal cytochrome P450 (CYP) enzymes. The variant nature of the isoform-specific proximal interface of microsomal CYPs indicates that CPR is capable of multiple degenerated interactions with CYPs for electron transfer, through different binding mechanisms, and which are still not well-understood. Recently, we showed that CPR dynamics allows formation of open conformations that can be sampled by its structurally diverse redox partners in a CYP-isoform dependent manner. To further investigate the role of the CPR FMN-domain in effective binding of CPR to its diverse acceptors and to clarify the underlying molecular mechanisms, five different CPR-FMN-domain random mutant libraries were created. These libraries were screened for mutants with increased activity when combined with specific CYP-isoforms. Seven CPR-FMN-domain mutants were identified, supporting a gain in activity for CYP1A2 (P117H, G144C, A229T), 2A6 (P117L/L125V, G175D, H183Y), or 3A4 (N151D). Effects were evaluated using extended enzyme kinetic analysis, cytochrome
competition, ionic strength effect on CYP activity, and structural analysis. Mutated residues were located either in or adjacent to several acidic amino acid stretches - formerly indicated to be involved in CPR:CYP interactions - or close to two tyrosine residues suggested to be involved in FMN binding. Several of the identified positions co-localize with mutations found in naturally occurring CPR variants that were previously shown to cause CYP-isoform-dependent effects. The mutations do not seem to significantly alter the geometry of the FMN-domain but are likely to cause very subtle alterations leading to improved interaction with a specific CYP. Overall, these data suggest that CYPs interact with CPR using an isoform specific combination of several binding motifs of the FMN-domain.
Journal Article
Inferring assembly-curving trends of bacterial micro-compartment shell hexamers from crystal structure arrangements
by
Truan, Gilles
,
ANR-19-CE09-0032,SPACEHex,Maitrise spatial à l'aide de plateformes de protéines hexamèriques
,
Reguera, David
in
Assembly
,
Bacteria
,
Bacterial Proteins
2023
Bacterial microcompartments (BMC) are complex macromolecular assemblies that participate in varied chemical processes in about one fourth of bacterial species. BMC-encapsulated enzymatic activities are segregated from other cell contents by means of semipermeable shells, justifying why BMC are viewed as prototype nano-reactors for biotechnological applications. Herein, we undertook a comparative study of bending propensities of BMC hexamers (BMC-H), the most abundant shell constituents. Published data show that some BMC-H, like β -carboxysomal CcmK, tend to assemble flat whereas other BMC-H often build curved objects. Inspection of available crystal structures presenting BMC-H in tiled arrangements permitted us to identify two major assembly modes with a striking connection with experimental trends. All-atom molecular dynamics (MD) supported that BMC-H bending is triggered robustly only from the arrangement adopted in crystals by BMC-H that experimentally form curved objects, leading to very similar arrangements to those found in structures of recomposed BMC shells. Simulations on triplets of planar-behaving hexamers, which were previously reconfigured to comply with such organization, confirmed that bending propensity is mostly defined by the precise lateral positioning of hexamers, rather than by BMC-H identity. Finally, an interfacial lysine was pinpointed as the most decisive residue in controlling PduA spontaneous curvature. Globally, results presented herein should contribute to improve our understanding of the variable mechanisms of biogenesis characterized for BMC, and of possible strategies to regulate BMC size and shape.
Journal Article
Structure of the open conformation of a functional chimeric NADPH cytochrome P450 reductase
by
Pompon, Denis
,
Truan, Gilles
,
Moréra, Solange
in
Catalysis
,
Crystallography, X-Ray
,
Cytochrome
2009
Two catalytic domains, bearing FMN and FAD cofactors, joined by a connecting domain, compose the core of the NADPH cytochrome P450 reductase (CPR). The FMN domain of CPR mediates electron shuttling from the FAD domain to cytochromes P450. Together, both enzymes form the main mixed‐function oxidase system that participates in the metabolism of endo‐ and xenobiotic compounds in mammals. Available CPR structures show a closed conformation, with the two cofactors in tight proximity, which is consistent with FAD‐to‐FMN, but not FMN‐to‐P450, electron transfer. Here, we report the 2.5 Å resolution crystal structure of a functionally competent yeast–human chimeric CPR in an open conformation, compatible with FMN‐to‐P450 electron transfer. Comparison with closed structures shows a major conformational change separating the FMN and FAD cofactors from 86 Å.
Journal Article
The Hinge Segment of Human NADPH-Cytochrome P450 Reductase in Conformational Switching: The Critical Role of Ionic Strength
by
Truan, Gilles
,
Bozonnet, Sophie
,
Urban, Philippe
in
Chemical bonds
,
Conformation
,
conformational exchange
2017
NADPH-cytochrome P450 reductase (CPR) is a redox partner of microsomal cytochromes P450 and is a prototype of the diflavin reductase family. CPR contains 3 distinct functional domains: a FMN-binding domain (acceptor reduction), a linker (hinge), and a connecting/FAD domain (NADPH oxidation). It has been demonstrated that the mechanism of CPR exhibits an important step in which it switches from a compact, closed conformation (locked state) to an ensemble of open conformations (unlocked state), the latter enabling electron transfer to redox partners. The conformational equilibrium between the locked and unlocked states has been shown to be highly dependent on ionic strength, reinforcing the hypothesis of the presence of critical salt interactions at the interface between the FMN and connecting FAD domains. Here we show that specific residues of the hinge segment are important in the control of the conformational equilibrium of CPR. We constructed six single mutants and two double mutants of the human CPR, targeting residues G240, S243, I245 and R246 of the hinge segment, with the aim of modifying the flexibility or the potential ionic interactions of the hinge segment. We measured the reduction of cytochrome
at various salt concentrations of these 8 mutants, either in the soluble or membrane-bound form of human CPR. All mutants were found capable of reducing cytochrome
yet with different efficiency and their maximal rates of cytochrome
reduction were shifted to lower salt concentration. In particular, residue R246 seems to play a key role in a salt bridge network present at the interface of the hinge and the connecting domain. Interestingly, the effects of mutations, although similar, demonstrated specific differences when present in the soluble or membrane-bound context. Our results demonstrate that the electrostatic and flexibility properties of the hinge segment are critical for electron transfer from CPR to its redox partners.
Journal Article
An artificial chromosome ylAC enables efficient assembly of multiple genes in Yarrowia lipolytica for biomanufacturing
by
Guo, Zhong-peng
,
Croux, Christian
,
Truan, Gilles
in
631/326/2522
,
631/61/252/318
,
Artificial chromosomes
2020
The efficient use of the yeast
Yarrowia lipolytica
as a cell factory is hampered by the lack of powerful genetic engineering tools dedicated for the assembly of large DNA fragments and the robust expression of multiple genes. Here we describe the design and construction of artificial chromosomes (ylAC) that allow easy and efficient assembly of genes and chromosomal elements. We show that metabolic pathways can be rapidly constructed by various assembly of multiple genes in vivo into a complete, independent and linear supplementary chromosome with a yield over 90%. Additionally, our results reveal that ylAC can be genetically maintained over multiple generations either under selective conditions or, without selective pressure, using an essential gene as the selection marker. Overall, the ylACs reported herein are game-changing technology for
Y. lipolytica
, opening myriad possibilities, including enzyme screening, genome studies and the use of this yeast as a previous unutilized bio-manufacturing platform.
Zhong-peng Guo et al. develop artificial chromosomes (ylAC) that allow easy and efficient assembly of multiple genes in
Yarrowia lipolytica
, a yeast strain commonly used for synthetic biology. ylAC provides an improved bio-manufacturing platform that is potentially useful for food, pharmaceutical, and environmental industries.
Journal Article
Optogenetic control of beta-carotene bioproduction in yeast across multiple lab-scales
by
Truan, Gilles
,
Hersen, Pascal
,
Banderas, Alvaro
in
beta-carotene
,
Bioengineering and Biotechnology
,
bioproduction
2023
Optogenetics arises as a valuable tool to precisely control genetic circuits in microbial cell factories. Light control holds the promise of optimizing bioproduction methods and maximizing yields, but its implementation at different steps of the strain development process and at different culture scales remains challenging. In this study, we aim to control beta-carotene bioproduction using optogenetics in Saccharomyces cerevisiae and investigate how its performance translates across culture scales. We built four lab-scale illumination devices, each handling different culture volumes, and each having specific illumination characteristics and cultivating conditions. We evaluated optogenetic activation and beta-carotene production across devices and optimized them both independently. Then, we combined optogenetic induction and beta-carotene production to make a light-inducible beta-carotene producer strain. This was achieved by placing the transcription of the bifunctional lycopene cyclase/phytoene synthase CrtYB under the control of the pC120 optogenetic promoter regulated by the EL222-VP16 light-activated transcription factor, while other carotenogenic enzymes (CrtI, CrtE, tHMG) were expressed constitutively. We show that illumination, culture volume and shaking impact differently optogenetic activation and beta-carotene production across devices. This enabled us to determine the best culture conditions to maximize light-induced beta-carotene production in each of the devices. Our study exemplifies the stakes of scaling up optogenetics in devices of different lab scales and sheds light on the interplays and potential conflicts between optogenetic control and metabolic pathway efficiency. As a general principle, we propose that it is important to first optimize both components of the system independently, before combining them into optogenetic producing strains to avoid extensive troubleshooting. We anticipate that our results can help designing both strains and devices that could eventually lead to larger scale systems in an effort to bring optogenetics to the industrial scale.
Journal Article
Single Mutations in Cytochrome P450 Oxidoreductase Can Alter the Specificity of Human Cytochrome P450 1A2-Mediated Caffeine Metabolism
by
Pompon, Denis
,
Truan, Gilles
,
Almeida, Cristina M. M.
in
Binding sites
,
Caffeine
,
caffeine metabolism
2023
A unique cytochrome P450 (CYP) oxidoreductase (CPR) sustains activities of human microsomal CYPs. Its function requires toggling between a closed conformation enabling electron transfers from NADPH to FAD and then FMN cofactors and open conformations forming complexes and transferring electrons to CYPs. We previously demonstrated that distinct features of the hinge region linking the FAD and FMN domain (FD) modulate conformer poses and their interactions with CYPs. Specific FD residues contribute in a CYP isoform-dependent manner to the recognition and electron transfer mechanisms that are additionally modulated by the structure of CYP-bound substrate. To obtain insights into the underlying mechanisms, we analyzed how hinge region and FD mutations influence CYP1A2-mediated caffeine metabolism. Activities, metabolite profiles, regiospecificity and coupling efficiencies were evaluated in regard to the structural features and molecular dynamics of complexes bearing alternate substrate poses at the CYP active site. Studies reveal that FD variants not only modulate CYP activities but surprisingly the regiospecificity of reactions. Computational approaches evidenced that the considered mutations are generally in close contact with residues at the FD–CYP interface, exhibiting induced fits during complexation and modified dynamics depending on caffeine presence and orientation. It was concluded that dynamic coupling between FD mutations, the complex interface and CYP active site exist consistently with the observed regiospecific alterations.
Journal Article