Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Language
      Language
      Clear All
      Language
  • Subject
      Subject
      Clear All
      Subject
  • Item Type
      Item Type
      Clear All
      Item Type
  • Discipline
      Discipline
      Clear All
      Discipline
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
61 result(s) for "Tsankov, Alexander M"
Sort by:
A revised airway epithelial hierarchy includes CFTR-expressing ionocytes
The airways of the lung are the primary sites of disease in asthma and cystic fibrosis. Here we study the cellular composition and hierarchy of the mouse tracheal epithelium by single-cell RNA-sequencing (scRNA-seq) and in vivo lineage tracing. We identify a rare cell type, the Foxi1 + pulmonary ionocyte; functional variations in club cells based on their location; a distinct cell type in high turnover squamous epithelial structures that we term ‘hillocks’; and disease-relevant subsets of tuft and goblet cells. We developed ‘pulse-seq’, combining scRNA-seq and lineage tracing, to show that tuft, neuroendocrine and ionocyte cells are continually and directly replenished by basal progenitor cells. Ionocytes are the major source of transcripts of the cystic fibrosis transmembrane conductance regulator in both mouse ( Cftr ) and human ( CFTR ). Knockout of Foxi1 in mouse ionocytes causes loss of Cftr expression and disrupts airway fluid and mucus physiology, phenotypes that are characteristic of cystic fibrosis. By associating cell-type-specific expression programs with key disease genes, we establish a new cellular narrative for airways disease. Single-cell RNA sequencing analysis identifies cell types and lineages in airway epithelium, including the pulmonary ionocyte, a new cell type predominantly expressing the cystic fibrosis gene CFTR .
A comparison of genetically matched cell lines reveals the equivalence of human iPSCs and ESCs
Human induced pluripotent stem cells show no consistent differences from human embryonic stem cells in a study that controls for several sources of variability. The equivalence of human induced pluripotent stem cells (hiPSCs) and human embryonic stem cells (hESCs) remains controversial. Here we use genetically matched hESC and hiPSC lines to assess the contribution of cellular origin (hESC vs. hiPSC), the Sendai virus (SeV) reprogramming method and genetic background to transcriptional and DNA methylation patterns while controlling for cell line clonality and sex. We find that transcriptional and epigenetic variation originating from genetic background dominates over variation due to cellular origin or SeV infection. Moreover, the 49 differentially expressed genes we detect between genetically matched hESCs and hiPSCs neither predict functional outcome nor distinguish an independently derived, larger set of unmatched hESC and hiPSC lines. We conclude that hESCs and hiPSCs are molecularly and functionally equivalent and cannot be distinguished by a consistent gene expression signature. Our data further imply that genetic background variation is a major confounding factor for transcriptional and epigenetic comparisons of pluripotent cell lines, explaining some of the previously observed differences between genetically unmatched hESCs and hiPSCs.
Transcription factor binding dynamics during human ES cell differentiation
Pluripotent stem cells provide a powerful system to dissect the underlying molecular dynamics that regulate cell fate changes during mammalian development. Here we report the integrative analysis of genome-wide binding data for 38 transcription factors with extensive epigenome and transcriptional data across the differentiation of human embryonic stem cells to the three germ layers. We describe core regulatory dynamics and show the lineage-specific behaviour of selected factors. In addition to the orchestrated remodelling of the chromatin landscape, we find that the binding of several transcription factors is strongly associated with specific loss of DNA methylation in one germ layer, and in many cases a reciprocal gain in the other layers. Taken together, our work shows context-dependent rewiring of transcription factor binding, downstream signalling effectors, and the epigenome during human embryonic stem cell differentiation. Lineage-specific transcription factors and signalling pathways cooperate with pluripotency regulators to control the transcriptional networks that drive cell specification and exit from an embryonic stem cell state; here, we report genome-wide binding data for 38 transcription factors combined with analysis of epigenomic and gene expression data during the differentiation of human embryonic stem cells into the three germ layers. Lineage specification by transcription factors Lineage-specific transcription factors and signalling pathways cooperate with pluripotency regulators when cells exit the embryonic stem cell state and activate the transcriptional networks that control cell specification. Here, as part of the Epigenome Roadmap project, Meissner and colleagues report genome-wide binding data for 38 transcription factors — combined with analysis of epigenomic and gene expression data — during the differentiation of human embryonic stem cells into the three germ layers. They reveal the orchestrated changes in transcription factor binding during differentiation, such as key roles for GATA4 and OTX2 in the transition to mesoderm and ectoderm, respectively.
Targeted disruption of DNMT1, DNMT3A and DNMT3B in human embryonic stem cells
Alexander Meissner and colleagues use CRISPR/Cas9 genome editing to inactivate the DNA methyltransferases DNMT1 , DNMT3A and DNMT3B in human embryonic stem cells (ESCs). They find an essential role for DNMT1 in human ESCs and generate genome-wide maps of the DNA methylation changes that occur following inactivation of these enzymes. DNA methylation is a key epigenetic modification involved in regulating gene expression and maintaining genomic integrity. Here we inactivated all three catalytically active DNA methyltransferases (DNMTs) in human embryonic stem cells (ESCs) using CRISPR/Cas9 genome editing to further investigate the roles and genomic targets of these enzymes. Disruption of DNMT3A or DNMT3B individually as well as of both enzymes in tandem results in viable, pluripotent cell lines with distinct effects on the DNA methylation landscape, as assessed by whole-genome bisulfite sequencing. Surprisingly, in contrast to findings in mouse, deletion of DNMT1 resulted in rapid cell death in human ESCs. To overcome this immediate lethality, we generated a doxycycline-responsive tTA-DNMT1* rescue line and readily obtained homozygous DNMT1 -mutant lines. However, doxycycline-mediated repression of exogenous DNMT1 * initiates rapid, global loss of DNA methylation, followed by extensive cell death. Our data provide a comprehensive characterization of DNMT-mutant ESCs, including single-base genome-wide maps of the targets of these enzymes.
A comparison of non-integrating reprogramming methods
A comparison of different ways of generating induced pluripotent stem cells helps researchers choose the most appropriate method for particular applications. Human induced pluripotent stem cells (hiPSCs 1 , 2 , 3 ) are useful in disease modeling and drug discovery, and they promise to provide a new generation of cell-based therapeutics. To date there has been no systematic evaluation of the most widely used techniques for generating integration-free hiPSCs. Here we compare Sendai-viral (SeV) 4 , episomal (Epi) 5 and mRNA transfection mRNA 6 methods using a number of criteria. All methods generated high-quality hiPSCs, but significant differences existed in aneuploidy rates, reprogramming efficiency, reliability and workload. We discuss the advantages and shortcomings of each approach, and present and review the results of a survey of a large number of human reprogramming laboratories on their independent experiences and preferences. Our analysis provides a valuable resource to inform the use of specific reprogramming methods for different laboratories and different applications, including clinical translation.
The Role of Nucleosome Positioning in the Evolution of Gene Regulation
Chromatin organization plays a major role in gene regulation and can affect the function and evolution of new transcriptional programs. However, it can be difficult to decipher the basis of changes in chromatin organization and their functional effect on gene expression. Here, we present a large-scale comparative genomic analysis of the relationship between chromatin organization and gene expression, by measuring mRNA abundance and nucleosome positions genome-wide in 12 Hemiascomycota yeast species. We found substantial conservation of global and functional chromatin organization in all species, including prominent nucleosome-free regions (NFRs) at gene promoters, and distinct chromatin architecture in growth and stress genes. Chromatin organization has also substantially diverged in both global quantitative features, such as spacing between adjacent nucleosomes, and in functional groups of genes. Expression levels, intrinsic anti-nucleosomal sequences, and trans-acting chromatin modifiers all play important, complementary, and evolvable roles in determining NFRs. We identify five mechanisms that couple chromatin organization to evolution of gene regulation and have contributed to the evolution of respiro-fermentation and other key systems, including (1) compensatory evolution of alternative modifiers associated with conserved chromatin organization, (2) a gradual transition from constitutive to trans-regulated NFRs, (3) a loss of intrinsic anti-nucleosomal sequences accompanying changes in chromatin organization and gene expression, (4) re-positioning of motifs from NFRs to nucleosome-occluded regions, and (5) the expanded use of NFRs by paralogous activator-repressor pairs. Our study sheds light on the molecular basis of chromatin organization, and on the role of chromatin organization in the evolution of gene regulation.
A qPCR ScoreCard quantifies the differentiation potential of human pluripotent stem cells
A qPCR ScoreCard assay provides a faster, more quantitative and scalable alternative to the teratoma assay for evaluating human stem cell lines. Research on human pluripotent stem cells has been hampered by the lack of a standardized, quantitative, scalable assay of pluripotency. We previously described an assay called ScoreCard that used gene expression signatures to quantify differentiation efficiency. Here we report an improved version of the assay based on qPCR that enables faster, more quantitative assessment of functional pluripotency. We provide an in-depth characterization of the revised signature panel (commercially available as the TaqMan hPSC Scorecard Assay) through embryoid body and directed differentiation experiments as well as a detailed comparison to the teratoma assay. We further show that the improved ScoreCard enables a wider range of applications, such as screening of small molecules, genetic perturbations and assessment of culture conditions. Our approach can be extended beyond stem cell applications to characterize and assess the utility of other cell types and lineages.
Analysis of chromatin accessibility uncovers TEAD1 as a regulator of migration in human glioblastoma
The intrinsic drivers of migration in glioblastoma (GBM) are poorly understood. To better capture the native molecular imprint of GBM and its developmental context, here we isolate human stem cell populations from GBM (GSC) and germinal matrix tissues and map their chromatin accessibility via ATAC-seq. We uncover two distinct regulatory GSC signatures, a developmentally shared/proliferative and a tumor-specific/migratory one in which TEAD1/4 motifs are uniquely overrepresented. Using ChIP-PCR, we validate TEAD1 trans occupancy at accessibility sites within AQP4 , EGFR , and CDH4 . To further characterize TEAD’s functional role in GBM, we knockout TEAD1 or TEAD4 in patient-derived GBM lines using CRISPR-Cas9. TEAD1 ablation robustly diminishes migration, both in vitro and in vivo, and alters migratory and EMT transcriptome signatures with consistent downregulation of its target AQP4 . TEAD1 overexpression restores AQP4 expression, and both TEAD1 and AQP4 overexpression rescue migratory deficits in TEAD1-knockout cells, implicating a direct regulatory role for TEAD1–AQP4 in GBM migration. The intrinsic drivers of glioblastoma (GBM) migration are still poorly understood. Here the authors purify GBM stem cells (GSCs) from patients and profile chromatin accessibility in these cells, identifying TEAD1 as a regulator of migration in human glioblastoma.
Dissecting neural differentiation regulatory networks through epigenetic footprinting
The integrative analysis of epigenetic footprints along consecutive stages of neural progenitors derived from human ES cells reveals regulatory mechanisms that orchestrate stage-specific differentiation. Nerve cell formation from pluripotent precursors There is great interest in understanding the stages and transitions of cell development as pluripotent cells follow the neuronal lineage. Here, Alexander Meissner and colleagues characterize the transcriptional and epigenetic landscape of six consecutive stages as human embryonic stem cells differentiate along the neuronal lineage. The authors apply a powerful computational framework to the data and identify key regulators and their effects on the epigenetic remodelling during these consecutive stages of differentiation. Models derived from human pluripotent stem cells that accurately recapitulate neural development in vitro and allow for the generation of specific neuronal subtypes are of major interest to the stem cell and biomedical community. Notch signalling, particularly through the Notch effector HES5, is a major pathway critical for the onset and maintenance of neural progenitor cells in the embryonic and adult nervous system 1 , 2 , 3 . Here we report the transcriptional and epigenomic analysis of six consecutive neural progenitor cell stages derived from a HES5::eGFP reporter human embryonic stem cell line 4 . Using this system, we aimed to model cell-fate decisions including specification, expansion and patterning during the ontogeny of cortical neural stem and progenitor cells. In order to dissect regulatory mechanisms that orchestrate the stage-specific differentiation process, we developed a computational framework to infer key regulators of each cell-state transition based on the progressive remodelling of the epigenetic landscape and then validated these through a pooled short hairpin RNA screen. We were also able to refine our previous observations on epigenetic priming at transcription factor binding sites and suggest here that they are mediated by combinations of core and stage-specific factors. Taken together, we demonstrate the utility of our system and outline a general framework, not limited to the context of the neural lineage, to dissect regulatory circuits of differentiation.
Monocyte depletion enhances neutrophil influx and proneural to mesenchymal transition in glioblastoma
Myeloid cells comprise the majority of immune cells in tumors, contributing to tumor growth and therapeutic resistance. Incomplete understanding of myeloid cells response to tumor driver mutation and therapeutic intervention impedes effective therapeutic design. Here, by leveraging CRISPR/Cas9-based genome editing, we generate a mouse model that is deficient of all monocyte chemoattractant proteins. Using this strain, we effectively abolish monocyte infiltration in genetically engineered murine models of de novo glioblastoma (GBM) and hepatocellular carcinoma (HCC), which show differential enrichment patterns for monocytes and neutrophils. Eliminating monocyte chemoattraction in monocyte enriched PDGFB -driven GBM invokes a compensatory neutrophil influx, while having no effect on Nf1 -silenced GBM model. Single-cell RNA sequencing reveals that intratumoral neutrophils promote proneural-to-mesenchymal transition and increase hypoxia in PDGFB -driven GBM. We further demonstrate neutrophil-derived TNF-a directly drives mesenchymal transition in PDGFB -driven primary GBM cells. Genetic or pharmacological inhibiting neutrophils in HCC or monocyte-deficient PDGFB -driven and Nf1 -silenced GBM models extend the survival of tumor-bearing mice. Our findings demonstrate tumor-type and genotype dependent infiltration and function of monocytes and neutrophils and highlight the importance of targeting them simultaneously for cancer treatments. Myeloid cells are the predominant cell type in the tumor microenvironment of human and murine glioblastoma (GBM). By generating a mouse model deficient for all monocyte chemoattractant proteins, here the authors show that blocking monocyte recruitment promotes a compensatory neutrophil influx and that concomitant neutrophil inhibition is required to improve survival in GBM preclinical models.