Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
22 result(s) for "Tulayakul, Phitsanu"
Sort by:
Enhancement of the Antibiofilm Activity of Nisin against Listeria monocytogenes Using Food Plant Extracts
Listeria monocytogenes is a foodborne pathogen exhibiting a high mortality rate. In addition to the robust tolerance to environmental stress, the ability of L. monocytogenes to develop biofilms increases the risk of contaminating food processing facilities and ultimately foods. This study aims to develop a synergistic approach to better control Listeria biofilms using nisin, the only bacteriocin approved as a food preservative, in combination with gallic-acid-rich food plant extracts. Biofilm assays in the presence of nisin and gallic acid or its derivatives revealed that gallic acid significantly decreased the level of biofilm formation in L. monocytogenes, whereas ethyl gallate, propyl gallate, and lauryl gallate enhanced biofilm production. As gallic acid is widely distributed in plants, we examined whether extracts from gallic-acid-rich food plants, such as clove, chestnut, oregano, and sage, may generate similar antibiofilm effects. Remarkably, sage extracts enhanced the antibiofilm activity of nisin against L. monocytogenes; however, the other tested extracts increased biofilm formation, particularly at high concentrations. Moreover, sage extracts and nisin combinations significantly reduced the biofilm formation of L. monocytogenes on stainless steel. Sage is a common food spice and has various beneficial health effects, including antioxidation and anti-cancer properties. The findings in this study demonstrate that sage extracts can be potentially combined with nisin to prevent biofilm production in L. monocytogenes.
Retrospective analysis of antimicrobial resistance of Salmonella spp. isolated from livestock and its environment in Thailand
A retrospective study of non-typhoidal isolation from poultry and pig farms in Nakhon Pathom and Suphan Buri provinces was conducted from 2008 to 2015. The aim of study was to examine the prevalence of antimicrobial resistance and class I integrons related to gene resistance of in livestock and its environment. A total of 636 isolates was collected from livestock and environmental samples. The isolates included 1.42% Typhimurium, 4.40% , and 1.26% ; however, neither nor were found. All isolates was tested for antimicrobial susceptibility and minimum inhibitory concentrations (CLSI Vet03-S2 2014, NCCLS standard). The top three drug resistances were to cephalexin, gentamicin, and amoxicillin. Typhimurium showed resistance rates of 100%, 100%, and 22.22% to these antibiotics, respectively; showed resistance rates of 100%, 100%, and 90.91%; and revealed resistance at the rates of 50%, 50%, 12.50%, respectively. The conserved segment integrase 1 and gene cassette were found by polymerase chain reaction (PCR) in all serotypes. The resistance gene of b, I1, (6')-la, (6')-lb, , A, , A1, A10 and A12 were not detected from Typhimurium and fewer resistance genes were detected when compared to the other two subtypes. These findings could be used to set up the prevention and control strategies for addressing future antimicrobial resistance of , which remains a major food safety concern.
Health significant alarms of toxic carcinogenic risk consumption of blood meal metals contamination in poultry at a gold mining neighborhood, northern Thailand
The proposes of this study were to compare THg (total mercury), Pb(Lead), Cd(Cadmium), and Mn (Manganese) contamination in poultry blood between polluted areas (≤ 25 km) and unpolluted areas (> 25 km) adjacent to the largest gold mining in northern Thailand. The THg level in the free-grazing duck in polluted areas was significantly higher than unpolluted area. Both THg and Pb levels in free-grazing duck were also highest in polluted areas. In contrast, the level of (Mn) in chicken blood was the highest in polluted areas. Cadmium in farmed duck from polluted areas was significantly higher than unpolluted areas. The target hazard quotient (THQ) and hazard index (HI) of Hg, Pb, Cd, and Mn in all age groups in both areas did not exceed 1, meaning there is no possibility of the non-carcinogenic toxicity. Whereas, the incremental lifetime cancer risk (ILCR) of both Pb and Cd exceeded 1 × 10–4 in all age groups and these were particularly higher in the polluted area and considered to yield significant health effects of increasing the cancer risk. The ILCR in descending order for Pb and Cd was 13–18 years old = 18–35 years old > 6–13 years old = 35–65 years old > 3–6 years old > 65 up years old, respectively. The results revealed that the human cancer risk related to consuming poultry blood contaminated with both Pb and Cd in all age groups must be of concern, especially 13–18 and 18–35 years, it must be recommended to avoid raising animals in contaminated areas, especially free-grazing duck.
Effect of the oil from the fatty tissues of Crocodylus siamensis on gut microbiome diversity and metabolism in mice
Dietary fat can alter host metabolism and gut microbial composition. Crocodile oil (CO) was extracted from the fatty tissues of Crocodylus siamensis . CO, rich in monounsaturated- and polyunsaturated fatty acids, has been reported to reduce inflammation, counter toxification, and improve energy metabolism. The aim of this study was to investigate the effect of CO on gut microbiota (GM) in laboratory mice as well as the accompanying metabolic changes in the animals. Forty-five C57BL/6 male mice were randomly divided into five groups and orally administrated either sterile water (control [C]); 1 or 3% (v/w) CO (CO-low [CO-L] and CO-high [CO-H], respectively); or 1 or 3% (v/w) palm oil (PO-low and PO-high, respectively) for 11 weeks. Body weight gain, food intake, energy intake, blood glucose levels, and blood lipid profiles were determined. Samples from colon tissue were collected and the 16S rRNA genes were pyrosequenced to clarify GM analyses. The results showed that there were no differences in body weight and blood glucose levels. Food intake by the mice in the CO-L and CO-H groups was statistically significantly less when compared to that by the animals in the C group. However, neither CO treatment had a statistically significant effect on calorie intake when compared to the controls. The CO-H exhibited a significant increase in serum total cholesterol and low-density lipoprotein but showed a downward trend in triglyceride levels compared to the control. The GM analyses revealed that both CO treatments have no significant influence on bacterial diversity and relative abundance at the phylum level, whereas increases of Choa1 and abundance-based coverage estimator indexes, distinct β-diversity, and Proteobacteria abundance were observed in the PO-high group compared with the C group. Furthermore, the abundance of Azospirillum thiophilum and Romboutsia ilealis was significantly higher in the CO-L and CO-H groups which could be associated with energy metabolic activity. Thus, CO may be an alternative fat source for preserving host metabolism and gut flora.
Synergistic Potentiation of Antimicrobial and Antibiofilm Activities of Penicillin and Bacitracin by Octyl Gallate, a Food-Grade Antioxidant, in Staphylococcus epidermidis
Staphylococcus epidermidis is a major nosocomial pathogen that frequently forms biofilms on indwelling medical devices. This study aimed to investigate the synergistic antimicrobial and antibiofilm activities of octyl gallate (OG) in combination with penicillin and bacitracin against S. epidermidis. Antimicrobial synergy was assessed by conducting checkerboard titration assays, and antibiofilm activity was determined with biofilm assays and fluorescence microscopy analysis. The presence of 8 µg/mL of OG increased both the bacteriostatic and bactericidal activities of penicillin and bacitracin against S. epidermidis. It lowered the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of penicillin by eight-fold and those of bacitracin by four-fold. Moreover, when used with penicillin or bacitracin, OG significantly decreased the level of biofilm production by preventing microcolony formation. Furthermore, OG significantly permeabilized the bacterial cell wall, which may explain its antimicrobial synergy with penicillin and bacitracin. Together, these results demonstrate that OG, a food-grade antioxidant, can be potentially used as a drug potentiator to enhance the antimicrobial and antibiofilm activities of penicillin and bacitracin against S. epidermidis.
Effects of Crocodile Oil (Crocodylus siamensis) on Liver Enzymes: Cytochrome P450 and Glutathione S-Transferase Activities in High-fat DietFed Rats
Crocodile oil is a highly effective treatment for ailments ranging from skin conditions to cancer. However, the effects of the oil on liver detoxification pathways are not well studied. This study aimed to investigate the effects of crocodile oil on the detoxification enzyme activities and the mRNA expressions of cytochrome P450 1A2 (CYP1A2), cytochrome P450 2E1 (CYP2E1), and glutathione S-transferase (GST) in rats. The rats were divided into four groups (n = 7/group): rats received a standard diet (C), a high-fat diet or HFD (H), and HFD with 1 ml (HCO1) and 3 ml (HCO3) of the oil per kg body weight. Interestingly, the oil yields from this study presented alpha-linolenic acid (0.96%) at similar levels compared with fish oil. The results revealed that HFD significantly increased the activity and relative gene expression of CYP1A2 in the H group (P<0.05), whereas 3% crocodile oil normalized the enzyme activities compared to the C group. This suggested inhibiting the HFD-induced expression of CYP1A2 mediated by the omega-3 fatty acids found in the oil. Also, crocodile oil supplementation did not reduce the activities of GST. However, the relative gene expression of GSTA1 was significantly decreased (P<0.05) in the HCO1 and HCO3 groups compared to the H group, which might be attributed to the lower lipid peroxidation that occurred in the liver tissues. Therefore, it could be suggested that using crocodile oil could help in liver detoxification through the CYP1A2 even when offered with a HFD.
A Serosurvey of Japanese Encephalitis Virus in Monkeys and Humans Living in Proximity in Thailand
Japanese encephalitis virus (JEV) is a member of the Flaviviridae family and one of Asia’s most common causes of encephalitis. JEV is a zoonotic virus that is transmitted to humans through the bite of infected mosquitoes of the Culex species. While humans are dead-end hosts for the virus, domestic animals such as pigs and birds are amplification hosts. Although JEV naturally infected monkeys have been reported in Asia, the role of non-human primates (NHPs) in the JEV transmission cycle has not been intensively investigated. In this study, we demonstrated neutralizing antibodies against JEV in NHPs (Macaca fascicularis) and humans living in proximity in two provinces located in western and eastern Thailand by using Plaque Reduction Neutralization Test (PRNT). We found a 14.7% and 5.6% seropositive rate in monkeys and 43.7% and 45.2% seropositive rate in humans living in west and east Thailand, respectively. This study observed a higher seropositivity rate in the older age group in humans. The presence of JEV neutralizing antibodies in NHPs that live in proximity to humans shows the occurrence of natural JEV infection, suggesting the endemic transmission of this virus in NHPs. According to the One Health concept, regular serological studies should be conducted especially at the animal–human interface.
Antioxidant Activity of Crocodile Oil (Crocodylus siamensis) on Cognitive Function in Rats
Crocodile oil (CO) is rich in monounsaturated fatty acids and polyunsaturated fatty acids. The antioxidant activity and cognitive effect of monounsaturated fatty acids and polyunsaturated fatty acids have been largely reported. This work aimed to investigate the effect of CO on antioxidant activity and cognitive function in rats. Twenty-one rats were divided into three treatment groups: (1) sterile water (NS), (2) 1 mL/kg of CO (NC1), and (3) 3 mL/kg of CO (NC3). Rats underwent oral gavage once daily for 8 weeks. CO treatment decreased the triglycerides level significantly compared with that in the NS group. CO had a free radical scavenging ability greater than that of olive oil but had no effect on levels of antioxidant markers in the brain. Expression of unique proteins in the CO-treatment group were correlated with the detoxification of hydrogen peroxide. Rats in the NC1 group had better memory function than rats in the NC3 group. Expression of unique proteins in the NC1 group was correlated with memory function. However, CO did not cause a decline in cognitive function in rats. CO can be an alternative dietary oil because it has a hypolipidemia effect and antioxidant activity. In addition, CO did not cause a negative effect on cognitive function.
A Novel Simian Adenovirus Associating with Human Adenovirus Species G Isolated from Long-Tailed Macaque Feces
Metagenomics has demonstrated its capability in outbreak investigations and pathogen surveillance and discovery. With high-throughput and effective bioinformatics, many disease-causing agents, as well as novel viruses of humans and animals, have been identified using metagenomic analysis. In this study, a VIDISCA metagenomics workflow was used to identify potential unknown viruses in 33 fecal samples from asymptomatic long-tailed macaques (Macaca fascicularis) in Ratchaburi Province, Thailand. Putatively novel astroviruses, enteroviruses, and adenoviruses were detected and confirmed by PCR analysis of long-tailed macaque fecal samples collected from areas in four provinces, Ratchaburi, Kanchanaburi, Lopburi, and Prachuap Khiri Khan, where humans and monkeys live in proximity (total n = 187). Astroviruses, enteroviruses, and adenoviruses were present in 3.2%, 7.5%, and 4.8% of macaque fecal samples, respectively. One adenovirus, named AdV-RBR-6-3, was successfully isolated in human cell culture. Whole-genome analysis suggested that it is a new member of the species Human adenovirus G, closely related to Rhesus adenovirus 53, with evidence of genetic recombination and variation in the hexon, fiber, and CR1 genes. Sero-surveillance showed neutralizing antibodies against AdV-RBR-6-3 in 2.9% and 11.2% of monkeys and humans, respectively, suggesting cross-species infection of monkeys and humans. Overall, we reported the use of metagenomics to screen for possible new viruses, as well as the isolation and molecular and serological characterization of the new adenovirus with cross-species transmission potential. The findings emphasize that zoonotic surveillance is important and should be continued, especially in areas where humans and animals interact, to predict and prevent the threat of emerging zoonotic pathogens.
Correction: Kosoltanapiwat et al. A Novel Simian Adenovirus Associating with Human Adenovirus Species G Isolated from Long-Tailed Macaque Feces. Viruses 2023, 15, 1371
After publication of the article, the authors received comments from a member of the Viruses editorial board who is an expert in the field of adenovirus concerning figures and references that should be included in the paper [...]