Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
87
result(s) for
"Turetsky, Merritt R."
Sort by:
Carbon release through abrupt permafrost thaw
by
Kuhry, Peter
,
Turetsky Merritt R
,
Jones, Miriam C
in
Atmospheric models
,
Carbon
,
Carbon emissions
2020
The permafrost zone is expected to be a substantial carbon source to the atmosphere, yet large-scale models currently only simulate gradual changes in seasonally thawed soil. Abrupt thaw will probably occur in <20% of the permafrost zone but could affect half of permafrost carbon through collapsing ground, rapid erosion and landslides. Here, we synthesize the best available information and develop inventory models to simulate abrupt thaw impacts on permafrost carbon balance. Emissions across 2.5 million km2 of abrupt thaw could provide a similar climate feedback as gradual thaw emissions from the entire 18 million km2 permafrost region under the warming projection of Representative Concentration Pathway 8.5. While models forecast that gradual thaw may lead to net ecosystem carbon uptake under projections of Representative Concentration Pathway 4.5, abrupt thaw emissions are likely to offset this potential carbon sink. Active hillslope erosional features will occupy 3% of abrupt thaw terrain by 2300 but emit one-third of abrupt thaw carbon losses. Thaw lakes and wetlands are methane hot spots but their carbon release is partially offset by slowly regrowing vegetation. After considering abrupt thaw stabilization, lake drainage and soil carbon uptake by vegetation regrowth, we conclude that models considering only gradual permafrost thaw are substantially underestimating carbon emissions from thawing permafrost.Analyses of inventory models under two climate change projection scenarios suggest that carbon emissions from abrupt thaw of permafrost through ground collapse, erosion and landslides could contribute significantly to the overall permafrost carbon balance.
Journal Article
Global vulnerability of peatlands to fire and carbon loss
by
van der Werf, Guido R.
,
Rein, Guillermo
,
Page, Susan
in
704/106/47
,
704/106/694/2739
,
704/158/2465
2015
The amount of carbon stored in peats exceeds that stored in vegetation. A synthesis of the literature suggests that smouldering fires in peatlands could become more common as the climate warms, and release old carbon to the air.
Globally, the amount of carbon stored in peats exceeds that stored in vegetation and is similar in size to the current atmospheric carbon pool. Fire is a threat to many peat-rich biomes and has the potential to disturb these carbon stocks. Peat fires are dominated by smouldering combustion, which is ignited more readily than flaming combustion and can persist in wet conditions. In undisturbed peatlands, most of the peat carbon stock typically is protected from smouldering, and resistance to fire has led to a build-up of peat carbon storage in boreal and tropical regions over long timescales. But drying as a result of climate change and human activity lowers the water table in peatlands and increases the frequency and extent of peat fires. The combustion of deep peat affects older soil carbon that has not been part of the active carbon cycle for centuries to millennia, and thus will dictate the importance of peat fire emissions to the carbon cycle and feedbacks to the climate.
Journal Article
Increasing wildfires threaten historic carbon sink of boreal forest soils
by
Day, Nicola J.
,
Ebert, Christopher
,
Walker, Xanthe J.
in
704/158/2445
,
704/158/2449
,
704/158/2454
2019
Boreal forest fires emit large amounts of carbon into the atmosphere primarily through the combustion of soil organic matter
1
–
3
. During each fire, a portion of this soil beneath the burned layer can escape combustion, leading to a net accumulation of carbon in forests over multiple fire events
4
. Climate warming and drying has led to more severe and frequent forest fires
5
–
7
, which threaten to shift the carbon balance of the boreal ecosystem from net accumulation to net loss
1
, resulting in a positive climate feedback
8
. This feedback will occur if organic-soil carbon that escaped burning in previous fires, termed ‘legacy carbon’, combusts. Here we use soil radiocarbon dating to quantitatively assess legacy carbon loss in the 2014 wildfires in the Northwest Territories of Canada
2
. We found no evidence for the combustion of legacy carbon in forests that were older than the historic fire-return interval of northwestern boreal forests
9
. In forests that were in dry landscapes and less than 60 years old at the time of the fire, legacy carbon that had escaped burning in the previous fire cycle was combusted. We estimate that 0.34 million hectares of young forests (<60 years) that burned in the 2014 fires could have experienced legacy carbon combustion. This implies a shift to a domain of carbon cycling in which these forests become a net source—instead of a sink—of carbon to the atmosphere over consecutive fires. As boreal wildfires continue to increase in size, frequency and intensity
7
, the area of young forests that experience legacy carbon combustion will probably increase and have a key role in shifting the boreal carbon balance.
Soil radiocarbon dating reveals that combusted ‘legacy carbon’—soil carbon that escaped burning during previous fires—could shift the carbon balance of boreal ecosystems, resulting in a positive climate feedback.
Journal Article
Permafrost collapse is accelerating carbon release
2019
The sudden collapse of thawing soils in the Arctic might double the warming from greenhouse gases released from tundra, warn Merritt R. Turetsky and colleagues.
The sudden collapse of thawing soils in the Arctic might double the warming from greenhouse gases released from tundra, warn Merritt R. Turetsky and colleagues.
Soil erosion due to permafrost thaw in the Batagaika crater in eastern Siberia
Journal Article
Multi-omics of permafrost, active layer and thermokarst bog soil microbiomes
2015
A multi-omics approach, integrating metagenomics, metatranscriptomics and metaproteomics, determines the phylogenetic composition of the microbial community and assesses its functional potential and activity along a thaw transition from intact permafrost to thermokast bog.
Multi-omics survey of frozen-soil microbiomes
The application of the various individual 'omics' tools to the study of microbial ecosystems has dramatically altered our view of their constituents and ecology over the past decade. Here Janet Jansson and colleagues develop an multi-omics approach, integrating metagenomics, metatranscriptomics and metaproteomics to analyse microbial gene expression in frozen soils that form part of the Alaska Peatland Experiment. The results show that the community shifts along a natural thaw gradient from permafrost to seasonally thawed active layer to thermokarst bog and the authors find that there is a transition in the potential for several biogeochemical cycles with thaw, including those for denitrification, nitrate reduction, iron reduction and methane oxidation.
Over 20% of Earth’s terrestrial surface is underlain by permafrost with vast stores of carbon that, once thawed, may represent the largest future transfer of carbon from the biosphere to the atmosphere
1
. This process is largely dependent on microbial responses, but we know little about microbial activity in intact, let alone in thawing, permafrost. Molecular approaches have recently revealed the identities and functional gene composition of microorganisms in some permafrost soils
2
,
3
,
4
and a rapid shift in functional gene composition during short-term thaw experiments
3
. However, the fate of permafrost carbon depends on climatic, hydrological and microbial responses to thaw at decadal scales
5
,
6
. Here we use the combination of several molecular ‘omics’ approaches to determine the phylogenetic composition of the microbial communities, including several draft genomes of novel species, their functional potential and activity in soils representing different states of thaw: intact permafrost, seasonally thawed active layer and thermokarst bog. The multi-omics strategy reveals a good correlation of process rates to omics data for dominant processes, such as methanogenesis in the bog, as well as novel survival strategies for potentially active microbes in permafrost.
Journal Article
Increasing fire and the decline of fire adapted black spruce in the boreal forest
by
Greene, David
,
Veraverbeke, Sander
,
Carrière, Suzanne
in
Biological Sciences
,
Boreal forests
,
Carbon sequestration
2021
Intensifying wildfire activity and climate change can drive rapid forest compositional shifts. In boreal North America, black spruce shapes forest flammability and depends on fire for regeneration. This relationship has helped black spruce maintain its dominance through much of the Holocene. However, with climate change and more frequent and severe fires, shifts away from black spruce dominance to broadleaf or pine species are emerging, with implications for ecosystem functions including carbon sequestration, water and energy fluxes, and wildlife habitat. Here, we predict that such reductions in black spruce after fire may already be widespread given current trends in climate and fire. To test this, we synthesize data from 1,538 field sites across boreal North America to evaluate compositional changes in tree species following 58 recent fires (1989 to 2014). While black spruce was resilient following most fires (62%), loss of resilience was common, and spruce regeneration failed completely in 18% of 1,140 black spruce sites. In contrast, postfire regeneration never failed in forests dominated by jack pine, which also possesses an aerial seed bank, or broad-leaved trees. More complete combustion of the soil organic layer, which often occurs in better-drained landscape positions and in dryer duff, promoted compositional changes throughout boreal North America. Forests in western North America, however, were more vulnerable to change due to greater long-term climate moisture deficits. While we find considerable remaining resilience in black spruce forests, predicted increases in climate moisture deficits and fire activity will erode this resilience, pushing the system toward a tipping point that has not been crossed in several thousand years.
Journal Article
Increased rainfall stimulates permafrost thaw across a variety of Interior Alaskan boreal ecosystems
by
Douglas, Thomas A.
,
Turetsky, Merritt R.
,
Koven, Charles D.
in
704/106/125
,
704/106/694/2739
,
704/158/2165
2020
Earth’s high latitudes are projected to experience warmer and wetter summers in the future but ramifications for soil thermal processes and permafrost thaw are poorly understood. Here we present 2750 end of summer thaw depths representing a range of vegetation characteristics in Interior Alaska measured over a 5 year period. This included the top and third wettest summers in the 91-year record and three summers with precipitation close to mean historical values. Increased rainfall led to deeper thaw across all sites with an increase of 0.7 ± 0.1 cm of thaw per cm of additional rain. Disturbed and wetland sites were the most vulnerable to rain-induced thaw with ~1 cm of surface thaw per additional 1 cm of rain. Permafrost in tussock tundra, mixed forest, and conifer forest was less sensitive to rain-induced thaw. A simple energy budget model yields seasonal thaw values smaller than the linear regression of our measurements but provides a first-order estimate of the role of rain-driven sensible heat fluxes in high-latitude terrestrial permafrost. This study demonstrates substantial permafrost thaw from the projected increasing summer precipitation across most of the Arctic region.
Journal Article
The Sphagnum microbiome: new insights from an ancient plant lineage
by
A. Jonathan Shaw
,
David J. Weston
,
Merritt R. Turetsky
in
60 APPLIED LIFE SCIENCES
,
Acidity
,
Aerobic conditions
2016
Peat mosses of the genus Sphagnum play a major role in global carbon storage and dominate many northern peatland ecosystems, which are currently being subjected to some of the most rapid climate changes on Earth.Arapidly expanding database indicates that a diverse community of microorganisms is intimately associated with Sphagnum, inhabiting the tissues and surface of the plant. Here we summarize the current state of knowledge regarding the Sphagnum microbiome and provide a perspective for future research directions. Although the majority of the microbiome remains uncultivated and its metabolic capabilities uncharacterized, prokaryotes and fungi have the potential to act as mutualists, symbionts, or antagonists of Sphagnum. For example, methanotrophic and nitrogen-fixing bacteria may benefit the plant host by providing up to 20–30% of Sphagnum carbon and nitrogen, respectively. Next-generation sequencing approaches have enabled the detailed characterization of microbiome community composition in peat mosses. However, as with other ecologically or economically important plants, our knowledge of Sphagnum–microbiome associations is in its infancy. In order to attain a predictive understanding of the role of the microbiome in Sphagnum productivity and ecosystem function, the mechanisms of plant–microbiome interactions and the metabolic potential of constituent microbial populations must be revealed.
Journal Article
Recent acceleration of biomass burning and carbon losses in Alaskan forests and peatlands
by
Kane, Evan S.
,
Turetsky, Merritt R.
,
Kasischke, Eric S.
in
704/106
,
704/158/2449
,
704/158/2454
2011
Climate change has increased the area affected by forest fires in boreal North America. An analysis of the depth of burning in forests and peatlands in Alaska indicates that ground-layer combustion has accelerated regional carbon losses.
Climate change has increased the area affected by forest fires each year in boreal North America
1
,
2
. Increases in burned area and fire frequency are expected to stimulate boreal carbon losses
3
,
4
,
5
. However, the impact of wildfires on carbon emissions is also affected by the severity of burning. How climate change influences the severity of biomass burning has proved difficult to assess. Here, we examined the depth of ground-layer combustion in 178 sites dominated by black spruce in Alaska, using data collected from 31 fire events between 1983 and 2005. We show that the depth of burning increased as the fire season progressed when the annual area burned was small. However, deep burning occurred throughout the fire season when the annual area burned was large. Depth of burning increased late in the fire season in upland forests, but not in peatland and permafrost sites. Simulations of wildfire-induced carbon losses from Alaskan black spruce stands over the past 60 years suggest that ground-layer combustion has accelerated regional carbon losses over the past decade, owing to increases in burn area and late-season burning. As a result, soils in these black spruce stands have become a net source of carbon to the atmosphere, with carbon emissions far exceeding decadal uptake.
Journal Article
Effects of permafrost thaw on nitrogen availability and plant–soil interactions in a boreal Alaskan lowland
by
Kielland, Knut
,
Finger, Rebecca A.
,
Euskirchen, Eugénie S.
in
Biogeochemistry
,
Bogs
,
botanical composition
2016
1. Increasing rates of permafrost thaw in boreal peatlands are converting conifer forests to water-logged open wetlands. Permafrost thaw increases soil nitrogen (N) availability, but it is unclear whether such changes are due solely to changes in surface soil N mineralization or N mobilization from thawing permafrost soils at depth. 2. We examined plant species composition and N availability along triplicate permafrost thaw gradients in Alaskan peatlands. Each gradient comprised four community types including: (i) a permafrost peatland with intact permafrost, (ii) a drunken forest experiencing active thaw, (iii) a moat representing initial complete thaw and (iv) a collapse scar bog representing several decades of post-thaw succession. 3. Concentrations of dissolved organic (DON) and inorganic N (DIN) in the upper 60 cm of soil increased along the permafrost thaw gradients. The drunken forest had the greatest mean concentrations of total dissolved N relative to the other community types, primarily due to greater concentrations of large molecular DON. The moat and collapse bog had significantly greater inorganic N concentrations than the permafrost or drunken forest, suggesting that changes in N availability are not a short-term effect, but can be sustained for decades or centuries. Across all plant community types, DIN and DON concentrations increased with soil depth during maximum seasonal ice thaw (September), suggesting that deeper soil horizons are important reservoirs of N post-thaw. 4. Vegetation responses to permafrost thaw included changes in plant community composition shifting from upland forest species to hydrophilic vegetation with deeper rooting profiles in the collapse scar bogs and changes in foliar N and δ¹⁵N values. N concentrations in plant foliage and litterfall increased with concentrations of DIN during collapse bog succession, suggesting that plants are utilizing additional mineralized N. 5. Synthesis. Our results suggest that the conversion of forest to wetlands associated with permafrost thaw in boreal lowlands increases N availability, at least in part by increasing turnover of deep soil organic matter. Plants appear to utilize these additional deeper N sources over timescales of years to centuries following permafrost thaw.
Journal Article