Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Reading Level
      Reading Level
      Clear All
      Reading Level
  • Content Type
      Content Type
      Clear All
      Content Type
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Item Type
    • Is Full-Text Available
    • Subject
    • Publisher
    • Source
    • Donor
    • Language
    • Place of Publication
    • Contributors
    • Location
1,891 result(s) for "Turner, David J"
Sort by:
The timing of differentiation and potency of CD8 effector function is set by RNA binding proteins
CD8 T cell differentiation into effector cells is initiated early after antigen encounter by signals from the T cell antigen receptor and costimulatory molecules. The molecular mechanisms that establish the timing and rate of differentiation however are not defined. Here we show that the RNA binding proteins (RBP) ZFP36 and ZFP36L1 limit the rate of differentiation of activated naïve CD8 T cells and the potency of the resulting cytotoxic lymphocytes. The RBP function in an early and short temporal window to enforce dependency on costimulation via CD28 for full T cell activation and effector differentiation by directly binding mRNA of NF-κB, Irf8 and Notch1 transcription factors and cytokines, including Il2. Their absence in T cells, or the adoptive transfer of small numbers of CD8 T cells lacking the RBP, promotes resilience to influenza A virus infection without immunopathology. These findings highlight ZFP36 and ZFP36L1 as nodes for the integration of the early T cell activation signals controlling the speed and quality of the CD8 T cell response.
Regulation by the RNA-binding protein Unkempt at its effector interface
How RNA-binding proteins (RBPs) convey regulatory instructions to the core effectors of RNA processing is unclear. Here, we document the existence and functions of a multivalent RBP-effector interface. We show that the effector interface of a conserved RBP with an essential role in metazoan development, Unkempt, is mediated by a novel type of 'dual-purpose' peptide motifs that can contact two different surfaces of interacting proteins. Unexpectedly, we find that the multivalent contacts do not merely serve effector recruitment but are required for the accuracy of RNA recognition by Unkempt. Systems analyses reveal that multivalent RBP-effector contacts can repurpose the principal activity of an effector for a different function, as we demonstrate for the reuse of the central eukaryotic mRNA decay factor CCR4-NOT in translational control. Our study establishes the molecular assembly and functional principles of an RBP-effector interface.
A functional screen of RNA binding proteins identifies genes that promote or limit the accumulation of CD138+ plasma cells
To identify roles of RNA binding proteins (RBPs) in the differentiation or survival of antibody secreting plasma cells we performed a CRISPR/Cas9 knockout screen of 1213 mouse RBPs for their ability to affect proliferation and/or survival, and the abundance of differentiated CD138 + cells in vitro. We validated the binding partners CSDE1 and STRAP as well as the m A binding protein YTHDF2 as promoting the accumulation of CD138 + cells in vitro. We validated the EIF3 subunits EIF3K and EIF3L and components of the CCR4-NOT complex as inhibitors of CD138 + cell accumulation in vitro. In chimeric mouse models YTHDF2-deficient plasma cells failed to accumulate.
The role of glyceraldehyde 3-phosphate dehydrogenase (GapA-1) in Neisseria meningitidis adherence to human cells
Glyceraldehyde 3-phosphate dehydrogenases (GAPDHs) are cytoplasmic glycolytic enzymes, which although lacking identifiable secretion signals, have also been found localized to the surface of several bacteria (and some eukaryotic organisms); where in some cases they have been shown to contribute to the colonization and invasion of host tissues. Neisseria meningitidis is an obligate human nasopharyngeal commensal which can cause life-threatening infections including septicaemia and meningitis. N. meningitidis has two genes, gapA-1 and gapA-2, encoding GAPDH enzymes. GapA-1 has previously been shown to be up-regulated on bacterial contact with host epithelial cells and is accessible to antibodies on the surface of capsule-permeabilized meningococcal cells. The aims of this study were: 1) to determine whether GapA-1 was expressed across different strains of N. meningitidis; 2) to determine whether GapA-1 surface accessibility to antibodies was dependent on the presence of capsule; 3) to determine whether GapA-1 can influence the interaction of meningococci and host cells, particularly in the key stages of adhesion and invasion. In this study, expression of GapA-1 was shown to be well conserved across diverse isolates of Neisseria species. Flow cytometry confirmed that GapA-1 could be detected on the cell surface, but only in a siaD-knockout (capsule-deficient) background, suggesting that GapA-1 is inaccessible to antibody in in vitro-grown encapsulated meningococci. The role of GapA-1 in meningococcal pathogenesis was addressed by mutational analysis and functional complementation. Loss of GapA-1 did not affect the growth of the bacterium in vitro. However, a GapA-1 deficient mutant showed a significant reduction in adhesion to human epithelial and endothelial cells compared to the wild-type and complemented mutant. A similar reduction in adhesion levels was also apparent between a siaD-deficient meningococcal strain and an isogenic siaD gapA-1 double mutant. Our data demonstrates that meningococcal GapA-1 is a constitutively-expressed, highly-conserved surface-exposed protein which is antibody-accessible only in the absence of capsule. Mutation of GapA-1 does not affect the in vitro growth rate of N. meningitidis, but significantly affects the ability of the organism to adhere to human epithelial and endothelial cells in a capsule-independent process suggesting a role in the pathogenesis of meningococcal infection.
Prevalence and phase variable expression status of two autotransporters, NalP and MspA, in carriage and disease isolates of Neisseria meningitidis
Neisseria meningitidis is a human nasopharyngeal commensal capable of causing life-threatening septicemia and meningitis. Many meningococcal surface structures, including the autotransporter proteins NalP and MspA, are subject to phase variation (PV) due to the presence of homopolymeric tracts within their coding sequences. The functions of MspA are unknown. NalP proteolytically cleaves several surface-located virulence factors including the 4CMenB antigen NhbA. Therefore, NalP is a phase-variable regulator of the meningococcal outer membrane and secretome whose expression may reduce isolate susceptibility to 4CMenB-induced immune responses. To improve our understanding of the contributions of MspA and NalP to meningococcal-host interactions, their distribution and phase-variable expression status was studied in epidemiologically relevant samples, including 127 carriage and 514 invasive isolates representative of multiple clonal complexes and serogroups. Prevalence estimates of >98% and >88% were obtained for mspA and nalP, respectively, with no significant differences in their frequencies in disease versus carriage isolates. 16% of serogroup B (MenB) invasive isolates, predominately from clonal complexes ST-269 and ST-461, lacked nalP. Deletion of nalP often resulted from recombination events between flanking repetitive elements. PolyC tract lengths ranged from 6-15 bp in nalP and 6-14 bp in mspA. In an examination of PV status, 58.8% of carriage, and 40.1% of invasive nalP-positive MenB isolates were nalP phase ON. The frequency of this phenotype was not significantly different in serogroup Y (MenY) carriage strains, but was significantly higher in invasive MenY strains (86.3%; p<0.0001). Approximately 90% of MenB carriage and invasive isolates were mspA phase ON; significantly more than MenY carriage (32.7%) or invasive (13.7%) isolates. This differential expression resulted from different mode mspA tract lengths between the serogroups. Our data indicates a differential requirement for NalP and MspA expression in MenB and MenY strains and is a step towards understanding the contributions of phase-variable loci to meningococcal biology.
Clinical experience with the meningococcal B vaccine, Bexsero® : Prospects for reducing the burden of meningococcal serogroup B disease
Highlights • MenB is the most common disease-causing meningococcal serogroup in many countries. • Based on in vitro data (Meningococcal Antigen Typing System assay), Bexsero is predicted to elicit a bactericidal response against most circulating MenB strains. • Bexsero has also demonstrated an acceptable safety profile. • Clinical recommendations on Bexsero use have been published in many countries. • Here we summarise the use of the vaccine since licensure.
A Multiwavelength Dynamical State Analysis of ACT-CL J0019.6+0336
In our study, we show a multiwavelength view of ACT-CL J0019.6+0336 (which hosts a radio halo), to investigate the cluster dynamics, morphology, and ICM. We use a combination of XMM-Newton images, Dark Energy Survey (DES) imaging and photometry, SDSS spectroscopic information, and 1.16 GHz MeerKAT data to study the cluster properties. Various X-ray and optical morphology parameters are calculated to investigate the level of disturbance. We find disturbances in two X-ray parameters and the optical density map shows elongated and axisymmetric structures with the main cluster component southeast of the cluster centre and another component northwest of the cluster centre. We also find a BCG offset of ∼950 km/s from the mean velocity of the cluster, and a discrepancy between the SZ mass, X-ray mass, and dynamical mass (MX,500 and MSZ,500 lies >3σ away from Mdyn,500), showing that J0019 is a merging cluster and probably in a post-merging phase.
Limited Impact of Adolescent Meningococcal ACWY Vaccination on Neisseria meningitidis Serogroup W Carriage in University Students
We investigated the impact of meningococcal conjugate vaccine on carriage of Neisseria meningitidis in university students. Expansion of capsule-expressing isolates from the 2013-strain of serogroup W clonal complex sequence type 11 but not isolates from serogroup Y clonal complex 23 suggests differential susceptibilities to vaccine-induced immunity. Abstract Background In the United Kingdom, rising levels of disease due to Neisseria meningitidis serogroup W clonal complex (cc) sequence type (ST) 11 (MenW:cc11) strains led to introduction of meningococcal conjugate vaccine (MenACWY) for teenagers. We investigated the impact of immunization on carriage of meningococci targeted by the vaccine, using whole-genome sequencing of isolates recovered from a cohort of vaccinated university students. Methods Strain designation data were extracted from whole-genome sequencing data. Genomes from carried and invasive MenW:cc11 strains were compared using a gene-by-gene approach. Serogrouping identified isolates expressing capsule antigens targeted by the vaccine. Results Isolates with a W: P1.5,2: F1-1: ST-11 (cc11) designation and belonging to the emerging 2013-strain of the South American–United Kingdom MenW:cc11 sublineage were responsible for an increase in carried group W strains. A multifocal expansion was evident, with close transmission networks extending beyond individual dormitories. Carried group Y isolates were predominantly from cc23 but showed significant heterogeneity, and individual strain designations were only sporadically recovered. No shifts toward acapsulate phenotypes were detected in targeted meningococcal populations. Conclusions In a setting with high levels of MenACWY use, expansion of capsule-expressing isolates from the 2013-strain of MenW:cc11 but not MenY:cc23 isolates is indicative of differential susceptibilities to vaccine-induced immunity.