Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
23
result(s) for
"Twiss, Sean D."
Sort by:
Personality, density and habitat drive the dispersal of invasive crayfish
2022
There is increasing evidence that personality traits may drive dispersal patterns of animals, including invasive species. We investigated, using the widespread signal crayfish
Pacifastacus leniusculus
as a model invasive species, whether effects of personality traits on dispersal were independent of, or affected by, other factors including population density, habitat, crayfish size, sex and limb loss, along an invasion gradient. Behavioural traits (boldness, activity, exploration, willingness to climb) of 310 individually marked signal crayfish were measured at fully-established, newly-established and invasion front sites of two upland streams. After a period at liberty, recaptured crayfish were reassessed for behavioural traits (newly-established, invasion front). Dispersal distance and direction of crayfish movement, local population density, fine-scale habitat characteristics and crayfish size, sex and limb loss were also measured. Individual crayfish exhibited consistency in behavioural traits over time which formed a behavioural syndrome. Dispersal was both positively and negatively affected by personality traits, positively by local population density and negatively by refuge availability. No effect of size, sex and limb loss was recorded. Personality played a role in promoting dispersal but population density and local habitat complexity were also important determinants. Predicting biological invasion in animals is likely to require better integration of these processes.
Journal Article
Domestication constrains the ability of dogs to convey emotions via facial expressions in comparison to their wolf ancestors
2024
Dogs (
Canis lupus familiaris
) are the domestically bred descendant of wolves (
Canis lupus
). However, selective breeding has profoundly altered facial morphologies of dogs compared to their wolf ancestors. We demonstrate that these morphological differences limit the abilities of dogs to successfully produce the same affective facial expressions as wolves. We decoded facial movements of captive wolves during social interactions involving nine separate affective states. We used linear discriminant analyses to predict affective states based on combinations of facial movements. The resulting confusion matrix demonstrates that specific combinations of facial movements predict nine distinct affective states in wolves; the first assessment of this many affective facial expressions in wolves. However, comparative analyses with kennelled rescue dogs revealed reduced ability to predict affective states. Critically, there was a very low predictive power for specific affective states, with confusion occurring between negative and positive states, such as Friendly and Fear. We show that the varying facial morphologies of dogs (specifically non-wolf-like morphologies) limit their ability to produce the same range of affective facial expressions as wolves. Confusion among positive and negative states could be detrimental to human–dog interactions, although our analyses also suggest dogs likely use vocalisations to compensate for limitations in facial communication.
Journal Article
Flexibility, variability and constraint in energy management patterns across vertebrate taxa revealed by long‐term heart rate measurements
by
Minta, Katarzyna
,
Arnold, Walter
,
Hicks, Olivia
in
ANIMAL PHYSIOLOGICAL ECOLOGY
,
Animals
,
annual cycle
2019
Animals are expected to be judicious in the use of the energy they gain due to the costs and limits associated with its intake. The management of energy expenditure (EE) exhibited by animals has previously been considered in terms of three patterns: the constrained, independent and performance patterns of energy management. These patterns can be interpreted by regressing daily EE against maintenance EE measured over extended periods. From the multiple studies on this topic, there is equivocal evidence about the existence of universal patterns in certain aspects of energy management.The implicit assumption that animals exhibit specifically one of three discrete energy management patterns, and without variation, seems simplistic. We suggest that animals can exhibit gradations of different energy management patterns and that the exact pattern will fluctuate as their environmental context changes.To investigate these ideas, and for possible large-scale patterns in energy management, we analysed long-term heart rate data—a strong proxy for EE—across and within individuals in 16 species of birds, mammals and fish.Our analyses of 292 individuals representing 46,539 observation-days suggest that vertebrates typically exhibit predominantly the independent or performance energy patterns at the across-individual level, and that the pattern does not associate with taxonomic group. Within individuals, however, animals generally exhibit some degree of energy constraint. Together, these findings indicate that across diverse species, some individuals supply more energy to all aspects of their life than do others, however all individuals must trade-off deployment of their available energy between competing functions. This demonstrates that within-individual analyses are essential for the interpretation of energy management patterns.We also found that species do not necessarily exhibit a fixed energy management pattern but rather temporal variation in their energy management over the year. Animals’ energy management exhibited stronger energy constraint during periods of higher EE, which typically coincided with clear and key life cycle events such as reproduction, suggesting an adaptive plasticity to respond to fluctuating energy demands.
Journal Article
An external telemetry system for recording resting heart rate variability and heart rate in free-ranging large wild mammals
by
Brannan, Naomi
,
Twiss, Sean D.
,
Bishop, Amanda M.
in
Biology and Life Sciences
,
Computer and Information Sciences
,
Earth Sciences
2021
Measures of heart rate variability (and heart rate more generally) are providing powerful insights into the physiological drivers of behaviour. Resting heart rate variability (HRV) can be used as an indicator of individual differences in temperament and reactivity to physical and psychological stress. There is increasing interest in deriving such measures from free ranging wild animals, where individuals are exposed to the natural and anthropogenic stressors of life. We describe a robust, externally mounted heart rate monitor for use in wild mammals, deployed here on wild breeding adult female grey seals ( Halichoerus grypus) , that delivers millisecond precise measures of inter beat intervals (IBIs), allowing computation of resting HRV parameters. Based on Firstbeat™ heart rate belts, our system allows for remote, continuous recording of IBI data from over 30 individuals simultaneously at ranges of up to 200m. We assessed the accuracy of the IBI data provided by the Firstbeat™ system using concurrent IBI data derived from in-field electrocardiogram (ECG) recordings. Bland-Altmann analyses demonstrated high correspondence between the two sets of IBI data, with a mean difference of 0.87±0.16ms. We used generalized additive mixed-effects models to examine the impact of the default Firstbeat™ software artefact correction procedure upon the generation of anomalous data (flats and stairs). Artefact correction and individual activity were major causes of flats and stairs. We used simulations and models to assess the impact of these errors on estimates of resting HRV and to inform criteria for subsampling relatively error free IBI traces. These analyses allowed us to establish stringent filtering procedures to remove traces with excessive numbers of artefacts, including flats and stairs. Even with strict criteria for removing potentially erroneous data, the abundance of data yielded by the Firstbeat™ system provides the potential to extract robust estimates of resting HRV. We discuss the advantages and limitations of our system for applications beyond the study system described here.
Journal Article
Maternal Oxytocin Is Linked to Close Mother-Infant Proximity in Grey Seals (Halichoerus grypus)
by
Pomeroy, Patrick P.
,
Robinson, Kelly J.
,
Twiss, Sean D.
in
Animals
,
Behavior
,
Behavior, Animal
2015
Maternal behaviour is a crucial component of reproduction in all mammals; however the quality of care that mothers give to infants can vary greatly. It is vital to document variation in maternal behaviour caused by the physiological processes controlling its expression. This underlying physiology should be conserved throughout reproductive events and should be replicated across all individuals of a species; therefore, any correlates to maternal care quality may be present across many individuals or contexts. Oxytocin modulates the initiation and expression of maternal behaviour in mammals; therefore we tested whether maternal plasma oxytocin concentrations correlated to key maternal behaviours in wild grey seals (Halichoerus grypus). Plasma oxytocin concentrations in non-breeding individuals (4.3 ± 0.5 pg/ml) were significantly lower than those in mothers with dependent pups in both early (8.2 ± 0.8 pg/ml) and late (6.9 ± 0.7 pg/ml) lactation. Maternal plasma oxytocin concentrations were not correlated to the amount of nursing prior to sampling, or a mother's nursing intensity throughout the dependent period. Mothers with high plasma oxytocin concentrations stayed closer to their pups, reducing the likelihood of mother-pup separation during lactation which is credited with causing starvation, the largest cause of pup mortality in grey seals. This is the first study to link endogenous oxytocin concentrations in wild mammalian mothers with any type of maternal behaviour. Oxytocin's structure and function is widely conserved across mammalian mothers, including humans. Defining the impact the oxytocin system has on maternal behaviour highlights relationships that may occur across many individuals or species, and such behaviours heavily influence infant development and an individual's lifetime reproductive success.
Journal Article
Assessing the utility and limitations of accelerometers and machine learning approaches in classifying behaviour during lactation in a phocid seal
by
Twiss, Sean D.
,
Pomeroy, Patrick P.
,
Shuert, Courtney R.
in
Accelerometer
,
accelerometers
,
Algorithms
2018
Background
Classifying behaviour with animal-borne accelerometers is quickly becoming a popular tool for remotely observing behavioural states in a variety of species. Most accelerometry work in pinnipeds has focused on classifying behaviour at sea often quantifying behavioural trade-offs associated with foraging and diving in income breeders. Very little work to date has been done to resolve behaviour during the critical period of lactation in a capital breeder. Capital breeding phocids possess finite reserves that they must allocate appropriately to maintain themselves and their new offspring during their brief nursing period. Within this short time, fine-scale behavioural trade-offs can have significant fitness consequences for mother and offspring and must be carefully managed. Here, we present a case study in extracting and classifying lactation behaviours in a wild, breeding pinniped, the grey seal (
Halichoerus grypus
).
Results
Using random forest models, we were able to resolve 4 behavioural states that constitute the majority of a female grey seals’ activity budget during lactation. Resting, alert, nursing, and a form of pup interaction were extracted and classified reliably. For the first time, we quantified the potential confounding variance associated with individual differences in a wild context as well as differences due to sampling location in a largely inactive model species.
Conclusions
At this stage, the majority of a female grey seal’s activity budget was classified well using accelerometers, but some rare and context-dependent behaviours were not well captured. While we did find significant variation between individuals in behavioural mechanics, individuals did not differ significantly within themselves; inter-individual variability should be an important consideration in future efforts. These methods can be extended to other efforts to study grey seals and other pinnipeds who exhibit a capital breeding system. Using accelerometers to classify behaviour during lactation allows for fine-scale assessments of time and energy trade-offs for species with fixed stores.
Journal Article
Variation in Female Grey Seal (Halichoerus grypus) Reproductive Performance Correlates to Proactive-Reactive Behavioural Types
by
Pomeroy, Patrick P.
,
Culloch, Ross M.
,
Twiss, Sean D.
in
Animal behavior
,
Animal reproduction
,
Animals
2012
Consistent individual differences (CIDs) in behaviour, indicative of behavioural types or personalities, have been shown in taxa ranging from Cnidaria to Mammalia. However, despite numerous theoretical explanations there remains limited empirical evidence for selective mechanisms that maintain such variation within natural populations. We examined behavioural types and fitness proxies in wild female grey seals at the North Rona breeding colony. Experiments in 2009 and 2010 employed a remotely-controlled vehicle to deliver a novel auditory stimulus to females to elicit changes in pup-checking behaviour. Mothers tested twice during lactation exhibited highly repeatable individual pup-checking rates within and across breeding seasons. Observations of undisturbed mothers (i.e. experiencing no disturbance from conspecifics or experimental test) also revealed CIDs in pup-checking behaviour. However, there was no correlation between an individuals' pup-checking rate during undisturbed observations with the rate in response to the auditory test, indicating plasticity across situations. The extent to which individuals changed rates of pup-checking from undisturbed to disturbed conditions revealed a continuum of behavioural types from proactive females, who maintained a similar rate throughout, to reactive females, who increased pup-checking markedly in response to the test. Variation in maternal expenditure (daily mass loss rate) was greater among more reactive mothers than proactive mothers. Consequently pups of more reactive mothers had more varied growth rates centred around the long-term population mean. These patterns could not be accounted for by other measured covariates as behavioural type was unrelated to a mother's prior experience, degree of inter-annual site fidelity, physical characteristics of their pupping habitat, pup sex or pup activity. These findings are consistent with the hypothesis that variation in behavioural types is maintained by spatial and temporal environmental variation combined with limits to phenotype-environment matching.
Journal Article
Coping styles in capital breeders modulate behavioural trade-offs in time allocation
by
Twiss, Sean D.
,
Pomeroy, Patrick P.
,
Shuert, Courtney R.
in
Accelerometers
,
accelerometry
,
Activity patterns
2020
Balancing time allocation among competing behaviours is an essential part of energy management for all animals. However, trade-offs in time allocation may vary according to the sex of the individual, their age, and even underlying physiology. During reproduction, higher energetic demands and constrained internal resources place greater demand on optimizing these trade-offs insofar that small adjustments in time-activity may lead to substantial effects on an individual’s limited energy budget. The most extreme case is found in animals that undergo capital breeding, where individuals fast for the duration of each reproductive episode. We investigated potential underlying drivers of time-activity and describe aspects of trade-offs in time-activity in a wild, capital breeding pinniped, the grey seal Halichoerus grypus, during the lactation period. For the first time, we were able to access full 24-h activity budgets across the core duration of lactation as well as characterize how aspects of stress-coping styles influence time allocation through the use of animal-borne accelerometers and heart rate monitors in situ. We found that there was a distinct trade-off in time activity between time spent Resting and Alert (vigilance). This trade-off varied with the pup’s development, date, and maternal stress-coping style as indicated by a measure of heart rate variability, rMSSD. In contrast, time spent Presenting/Nursing did not vary across the duration of lactation given the variables tested. We suggest that while mothers balance time spent conserving resources (Resting) against time expending energy (Alert), they are also influenced by the inherent physiological drivers of stress-coping styles.
Journal Article
Positive social behaviours are induced and retained after oxytocin manipulations mimicking endogenous concentrations in a wild mammal
2017
The neuropeptide hormone oxytocin modulates numerous social and parental behaviours across a wide range of species, including humans. We conducted manipulation experiments on wild grey seals (Halichoerus grypus) to determine whether oxytocin increases proximity-seeking behaviour, which has previously been correlated with endogenous oxytocin concentrations in wild seal populations. Pairs of seals that had never met previously were given intravenous injections of 0.41 µg kg−1 oxytocin or saline and were observed for 1 h post-manipulation. The dose was designed to mimic endogenous oxytocin concentrations during the observation period, and is one of the lowest doses used to manipulate behaviour to date. Seals given oxytocin spent significantly more time in close proximity to each other, confirming that oxytocin causes conspecifics to seek others out and remain close to one another. Aggressive and investigative behaviours also significantly fell after oxytocin manipulations. Despite using a minimal oxytocin dose, pro-social behavioural changes unexpectedly persisted for 2 days despite rapid dose clearance from circulation post-injection. This study verifies that oxytocin promotes individuals staying together, demonstrating how the hormone can form positive feedback loops of oxytocin release following conspecific stimuli, increased motivation to remain in close proximity and additional oxytocin release from stimuli received while in close proximity.
Journal Article
Reactive stress-coping styles show more variable reproductive expenditure and fitness outcomes
2020
Stress-coping styles dictate how individuals react to stimuli and can be measured by the integrative physiological parameter of resting heart-rate variability (HRV); low resting HRV indicating proactive coping styles, while high resting HRV typifies reactive individuals. Over 5 successive breeding seasons we measured resting HRV of 57 lactating grey seals. Mothers showed consistent individual differences in resting HRV across years. We asked whether proactive and reactive mothers differed in their patterns of maternal expenditure and short-term fitness outcomes within seasons, using maternal daily mass loss rate to indicate expenditure, and pup daily mass gain to indicate within season fitness outcomes. We found no difference in average rates of maternal daily mass loss or pup daily mass gain between proactive and reactive mothers. However, reactive mothers deviated more from the sample mean for maternal daily mass and pup daily mass gain than proactive mothers. Thus, while proactive mothers exhibit average expenditure strategies with average outcomes, expenditure varies much more among reactive mothers with more variable outcomes. Overall, however, mean fitness was equal across coping styles, providing a mechanism for maintaining coping style diversity within populations. Variability in reactive mothers’ expenditures and success is likely a product of their attempts to match phenotype to prevailing environmental conditions, achieved with varying degrees of success.
Journal Article