Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
92
result(s) for
"Uchihara, Toshiki"
Sort by:
Propagation of alpha-synuclein pathology: hypotheses, discoveries, and yet unresolved questions from experimental and human brain studies
2016
Progressive aggregation of alpha-synuclein (αS) through formation of amorphous pale bodies to mature Lewy bodies or in neuronal processes as Lewy neurites may be the consequence of conformational protein changes and accumulations, which structurally represents “molecular template”. Focal initiation and subsequent spread along anatomically connected structures embody “structural template”. To investigate the hypothesis that both processes might be closely associated and involved in the progression of αS pathology, which can be observed in human brains, αS amyloidogenic precursors termed “seeds” were experimentally injected into the brain or peripheral nervous system of animals. Although these studies showed that αS amyloidogenic seeds can induce αS pathology, which can spread in the nervous system, the findings are still not unequivocal in demonstrating predominant transsynaptic or intraneuronal spreads either in anterograde or retrograde directions. Interpretation of some of these studies is further complicated by other concurrent aberrant processes including neuroimmune activation, injury responses and/or general perturbation of proteostasis. In human brain, αS deposition and neuronal degeneration are accentuated in distal axon/synapse. Hyperbranching of axons is an anatomical commonality of Lewy-prone systems, providing a structural basis for abundance in distal axons and synaptic terminals. This neuroanatomical feature also can contribute to such distal accentuation of vulnerability in neuronal demise and the formation of αS inclusion pathology. Although retrograde progression of αS aggregation in hyperbranching axons may be a consistent feature of Lewy pathology, the regional distribution and gradient of Lewy pathology are not necessarily compatible with a predictable pattern such as upward progression from lower brainstem to cerebral cortex. Furthermore, “focal Lewy body disease” with the specific isolated involvement of autonomic, olfactory or cardiac systems suggests that spread of αS pathology is not always consistent. In many instances, the regional variability of Lewy pathology in human brain cannot be explained by a unified hypothesis such as transsynaptic spread. Thus, the distribution of Lewy pathology in human brain may be better explained by variable combinations of independent focal Lewy pathology to generate “multifocal Lewy body disease” that could be coupled with selective but variable neuroanatomical spread of αS pathology. More flexible models are warranted to take into account the relative propensity to develop Lewy pathology in different Lewy-prone systems, even without interconnections, compatible with the expanding clinicopathological spectra of Lewy-related disorders. These revised models are useful to better understand the mechanisms underlying the variable progression of Lewy body diseases so that diagnostic and therapeutic strategies are improved.
Journal Article
Cholesterol-functionalized DNA/RNA heteroduplexes cross the blood–brain barrier and knock down genes in the rodent CNS
2021
Achieving regulation of endogenous gene expression in the central nervous system (CNS) with antisense oligonucleotides (ASOs) administered systemically would facilitate the development of ASO-based therapies for neurological diseases. We demonstrate that DNA/RNA heteroduplex oligonucleotides (HDOs) conjugated to cholesterol or α-tocopherol at the 5′ end of the RNA strand reach the CNS after subcutaneous or intravenous administration in mice and rats. The HDOs distribute throughout the brain, spinal cord and peripheral tissues and suppress the expression of four target genes by up to 90% in the CNS, whereas single-stranded ASOs conjugated to cholesterol have limited activity. Gene knockdown was observed in major CNS cell types and was greatest in neurons and microglial cells. Side effects, such as thrombocytopenia and focal brain necrosis, were limited by using subcutaneous delivery or by dividing intravenous injections. By crossing the blood–brain barrier more effectively, cholesterol-conjugated HDOs may overcome the limited efficacy of ASOs targeting the CNS without requiring intrathecal administration.
Genes in the rodent brain are knocked down by DNA/RNA heteroduplexes injected intravenously.
Journal Article
Loss of autophagy in dopaminergic neurons causes Lewy pathology and motor dysfunction in aged mice
2018
Inactivation of constitutive autophagy results in the formation of cytoplasmic inclusions in neurons, but the relationship between impaired autophagy and Lewy bodies (LBs) as well as the
in vivo
process of formation remains unknown. Synuclein, a component of LBs, is the defining characteristic of Parkinson’s disease (PD). Here, we characterize dopamine (DA) neuron–specific autophagy-deficient mice and provide
in vivo
evidence for LB formation. Synuclein deposition is preceded by p62 and resulted in the formation of inclusions containing synuclein and p62. The number and size of these inclusions were gradually increased in neurites rather than soma with aging. These inclusions may facilitate peripheral failures. As a result, DA neuron loss and motor dysfunction including the hindlimb defect were observed in 120-week-old mice. P62 aggregates derived from an autophagic defect might serve as “seeds” and can potentially be cause of LB formation.
Journal Article
PART is part of Alzheimer disease
by
Tolnay, Markus
,
Brion, Jean-Pierre
,
Braak, Heiko
in
Aging
,
Aging - pathology
,
Alzheimer Disease - diagnosis
2015
It has been proposed that tau aggregation confined to entorhinal cortex and hippocampus, with no or only minimal Aβ deposition, should be considered as a ‘primary age-related tauopathy’ (PART) that is not integral to the
continuum
of sporadic Alzheimer disease (AD). Here, we examine the evidence that PART has a pathogenic mechanism and a prognosis which differ from those of AD. We contend that no specific property of the entorhinal–hippocampal tau pathology makes it possible to predict either a limited progression or the development of AD, and that biochemical differences await an evidence base. On the other hand, entorhinal–hippocampal tau pathology is an invariant feature of AD and is always associated with its development. Rather than creating a separate disease entity, we recommend the continued use of an analytical approach based on NFT stages and Aβ phases with no inference about hypothetical disease processes.
Journal Article
The Determinant of Tau Spreading in Alzheimer’s Disease: Dependent on Senile Plaque, Neural Circuits, or Spatial Proximity?
by
Iwasaki, Yasushi
,
Brion, Jean-Pierre
,
Riku, Yuichi
in
Alzheimer Disease - metabolism
,
Alzheimer Disease - pathology
,
Alzheimer's disease
2025
Alzheimer’s disease (AD) is neuropathologically characterized by tau-immunopositive neurofibrillary tangles (NFTs) and amyloid-β (Aβ)-immunopositive senile plaques. According to the widely accepted amyloid cascade hypothesis, Aβ pathology represents the upstream event in AD pathophysiology and induces tau aggregation. However, numerous studies have suggested that tau aggregates correlate more closely with neuronal loss and regional brain atrophy than with Aβ depositions. Tau aggregation in AD demonstrates a hierarchical spreading pattern beginning in the transentorhinal cortex, but the mechanisms underlying this spreading manner of lesions remain to be elucidated. This review aims to address current controversies regarding tau pathology in AD from the perspectives of both the ‘amyloid cascade’ and ‘tauopathy’ hypotheses. From the ‘amyloid cascade’ viewpoint, Aβ deposition prominently involves distal axon and axon terminals, and in some regions, there are anatomical correspondences between axonal Aβ pathology and cytoplasmic tau aggregations (e.g., a close relationship between senile plaques in the molecular layer of the hippocampal dentate gyrus and NFTs in the transentorhinal cortex). Nevertheless, this model cannot explain the whole body of hierarchical spreading of tau aggregation because notable spaciotemporal discrepancies also exist in many regions. From the ‘tauopathy’ perspective, the distribution of tau aggregates in AD involves key nodes within the memory circuits. Also, experimental studies have suggested that patient-derived tau exhibits seeding and neuron-to-neuron propagation properties. Interestingly, tau aggregation in AD appears to spread laterally in a proximity-dependent, cortico-cortical fashion rather than along long-range memory circuits. This contrasts with the system-selective, poly-nodal degenerations seen in four-repeat tauopathies, amyotrophic lateral sclerosis, or spinocerebellar degenerations. Moreover, the proportions of three-repeat and four-repeat isoforms shift during the maturation of NFTs in AD. Overall, spreading patterns of tau-pathology in AD cannot be fully explained by Aβ pathology and also differ from the system degeneration seen in other tauopathies.
Journal Article
Possible Coexistence of Pellagra in a Malnourished Patient with Seizure and Multiple Cerebrovascular Foci: A Case Report
2025
Background and Clinical Significance: Pellagra is caused by a chronic deficiency of niacin (vitamin B3 or nicotinic acid): it is rare in developed countries, where the major risk factors are chronic alcoholism and intestinal malabsorption. Although it typically presents three main symptoms, dermatitis, diarrhea, and dementia, some cases do not show these classic symptoms. Case Presentation: We report a case of a malnourished patient with seizure and multiple cerebrovascular foci, in whom a postmortem autopsy revealed the findings of pellagra. The patient had atypical symptoms of seizure as pellagra and the multiple cerebrovascular lesions, which made the diagnosis difficult. Conclusions: The aim of this paper is to recognize the importance of suspecting pellagra as a treatable disease, especially when patients with eating disorder present atypical symptoms.
Journal Article
Parallel gold enhancement of quantum dots 565/655 for double-labelling correlative light and electron microscopy on human autopsied samples
2022
Cadmium selenide quantum dots (QDs) are fluorescent and electron-dense nanoparticles. When used as reporter of immunolabeling, this dual visibility is essential for direct comparison of its fluorescent signals on light microscopy (LM) and their ultrastructrual counterparts on electron microscopy (EM) as correlative light and electron microscopy (CLEM). To facilitate EM recognition, QDs on EM grid were gold enhanced, which increased their size and electron density. On histological sections as well, gold-enhanced QDs, used as a reporter of immunolabeling, were easily recognized on EM. Because target structures are visible on bright field microscopy, gold enhancement facilitated trimming the target structures into final EM sections. Furthermore, gold enhancement of rod-shaped QD655 on EM grid was accentuated on their tips while spherical QD565 was gold-enhanced as sphere in contrast. This EM distinction was evident on histological sections where QD565 (green fluorescence) and QD655 (red fluorescence) were used as a reporter pair for double immunolabeling. Double-labeled immuno-fluorescent images, initially captured before EM processing, are now compared with their respective immuno EM counterparts. Specific labeling of each epitope was corroborated by mutual comparison between LM and EM. Although fluoronanogold may be a candidate reporter partner with QDs for gold-enhanced, double-labeling CLEM, its limited penetration into fixed tissue hampers universal use for thick histological sections. Gold-enhancement of QD immunolabeling, now expanded to double-labeling CLEM for human brain samples, will pave the way to translate molecular events into ultrastructural morphopathogenesis in situ.
Journal Article
Isoform transition from four-repeat to three-repeat tau underlies dendrosomatic and regional progression of neurofibrillary pathology
by
Hirokawa, Katsuiku
,
Kamei, Satoshi
,
Hara, Makoto
in
Aged
,
Aged, 80 and over
,
Alzheimer Disease - metabolism
2013
Regional progression of neurofibrillary tangles (NFTs) around the hippocampus was traced on thick sections double immunofluorolabeled with RD3 and RD4 antibodies, specific for three- and four-repeat tau, respectively. As reported, the cubic density of all tau-positive neurons was predominant in the entorhinal cortex and cornu ammonis (CA)1, and decreased progressively to the CA2–4 subregions. Among the three isoform profiles (RD3+/4−, RD3+/4+, and RD3−/4+), this regional gradient was replicated with RD3+/4− and RD3+/4+ neurons, while RD3−/4+ neurons exhibited the reverse gradient. Comparison of the subregion pairs confirmed a consistent profile shift along this gradient in every case regardless of the abundance of NFTs. To clarify the underlying mechanism of this regional profile shift, intraneuronal intensity of RD3 and RD4 immunoreactivity (IR) was quantified. Although their intensities were both lower in dendrites than in the soma, this gradient was steeper with RD4, leaving RD3 IR in dendrites. Dendritic arborization was abundant in RD3−/4+ pretangles, attenuated in RD3+/4+ neurons, and further attenuated in RD3+/4− ghost tangles. These findings suggest that dendritic RD4 IR retracts first, leaving RD3 IR in the dendrites. Taken together, this dendrite-oriented retraction initiates the gradual shift from RD3−/4+ pretangle neurons to RD3+/4− ghost tangles by way of RD3+/4+ NFTs. This intraneuronal profile shift may be a basis for the regional gradation featured by the similar profile shift during progression of NFT pathology.
Journal Article
Brainstem tau pathology in Alzheimer’s disease is characterized by increase of three repeat tau and independent of amyloid β
by
Hirokawa, Katsuiku
,
Uematsu, Miho
,
Nakamura, Ayako
in
Alzheimer disease pathology
,
Alzheimer's disease
,
Biomedical and Life Sciences
2018
Introduction
Alzheimer-type neuropil threads (NTs) and neurofibrillary tangles (NFTs) are comprised of either 4 repeat (4R)-tau, 3 repeat (3R)-tau, or a mixture of both. In the hippocampus, the number of NFTs, and the proportion of 3R tau progressively increases. If this preferential accumulation of 3R tau also occurs in the brainstem, it may be fundamentally related to progression of Alzheimer pathology.
Methods
Midbrain and pontine sections of brainstems from 23 cases (Braak-NFT stages I/II: 8, III/IV: 8, and V/VI: 7) were double immunofluorolabeled for 4R and 3R tau. High-resolution (0.645 μm/pixel), in-focus snapshots were tiled to cover entire brain sections using a virtual slide system. Each lesion was classified by size (NT < 200 μm
2
< NFT) and staining profile (3R/4R). In addition, the localization and quantity of amyloid β (Aβ) deposits were examined in adjacent sections for comparison with tau.
Results
The data sets obtained from approximately 286 gigabytes of image files consisted of 847,763 NTs and 7859 NFTs. The proportion of 3R tau-positive NTs and NFTs in the midbrain, and 3R tau-positive NTs in the pons gradually increased with advancing NFT stages, while the proportion of 3R tau-positive NFTs in the pons was already elevated at early stages. Aβ deposits were absent at NFT stages I/II, and when present at later stages, their regional distribution was different from that of tau. These observations suggest that a progressive increase in the proportion of 3R tau occurs independently of Aβ deposits.
Conclusions
This is the first quantitative analysis of NFTs and NTs in the human brainstem. We demonstrate that the proportion of 3R tau in the brainstem neurofibrillary changes increases with disease progression. Because this phenomenon is shared between the brainstem and the hippocampus, this increase may be fundamental to the pathogenesis of Alzheimer disease.
Journal Article