Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
61
result(s) for
"Ueltschi, Daniel"
Sort by:
Entropy and the quantum : Arizona School of Analysis with Applications, March 16-20, 2009, University of Arizona
by
Ueltschi, Daniel
,
Sims, Robert
,
Arizona School of Analysis with Applications
in
Quantum entropy
,
Quantum Entropy -- Congresses
2010
These lecture notes provide a pedagogical introduction to quantum mechanics and to some of the mathematics that has been motivated by this field. They are a product of the school \"\"Entropy and the Quantum\"\", which took place in Tucson, Arizona, in 2009. They have been written primarily for young mathematicians, but they will also prove useful to more experienced analysts and mathematical physicists. In the first contribution, William Faris introduces the mathematics of quantum mechanics. Robert Seiringer and Eric Carlen review certain recent developments in stability of matter and analytic inequalities, respectively. Bruno Nachtergaele and Robert Sims review locality results for quantum systems, and Christopher King deals with additivity conjectures and quantum information theory. The final article, by Christian Hainzl, describes applications of analysis to the Shandrasekhar limit of stellar masses.|These lecture notes provide a pedagogical introduction to quantum mechanics and to some of the mathematics that has been motivated by this field. They are a product of the school \"\"Entropy and the Quantum\"\", which took place in Tucson, Arizona, in 2009. They have been written primarily for young mathematicians, but they will also prove useful to more experienced analysts and mathematical physicists. In the first contribution, William Faris introduces the mathematics of quantum mechanics. Robert Seiringer and Eric Carlen review certain recent developments in stability of matter and analytic inequalities, respectively. Bruno Nachtergaele and Robert Sims review locality results for quantum systems, and Christopher King deals with additivity conjectures and quantum information theory. The final article, by Christian Hainzl, describes applications of analysis to the Shandrasekhar limit of stellar masses.
Entropy and the quantum II : Arizona School of Analysis with Applications, March 15-19, 2010, University of Arizona
by
Ueltschi, Daniel
,
Sims, Robert
,
Arizona School of Analysis with Applications
in
Linear and multilinear algebra; matrix theory -- Special matrices -- Random matrices. msc
,
Partial differential equations -- Equations of mathematical physics and other areas of application -- Boltzmann equations. msc
,
Partial differential equations -- Spectral theory and eigenvalue problems -- Estimation of eigenvalues, upper and lower bounds. msc
2011
The goal of the Entropy and the Quantum schools has been to introduce young researchers to some of the exciting current topics in mathematical physics. These topics often involve analytic techniques that can easily be understood with a dose of physical intuition. In March of 2010, four beautiful lectures were delivered on the campus of the University of Arizona. They included Isoperimetric Inequalities for Eigenvalues of the Laplacian by Rafael Benguria, Universality of Wigner Random Matrices by Laszlo Erdos, Kinetic Theory and the Kac Master Equation by Michael Loss, and Localization in Disordered Media by Gunter Stolz. Additionally, there were talks by other senior scientists and a number of interesting presentations by junior participants. The range of the subjects and the enthusiasm of the young speakers are testimony to the great vitality of this field, and the lecture notes in this volume reflect well the diversity of this school.
CRITICAL PARAMETER OF RANDOM LOOP MODEL ON TREES
2018
We give estimates of the critical parameter for random loop models that are related to quantum spin systems. A special case of the model that we consider is the interchange- or random-stirring process. We consider here the model defined on regular trees of large degrees, which are expected to approximate high spatial dimensions. We find a critical parameter that indeed shares similarity with existing numerical results for the cubic lattice. In the case of the interchange process, our results improve on earlier work by Angel and by Hammond, in that we determine the second-order term of the critical parameter.
Journal Article
RANDOM PERMUTATIONS WITH CYCLE WEIGHTS
by
Betz, Volker
,
Ueltschi, Daniel
,
Velenik, Yvan
in
60K35
,
Coefficients
,
Combinatorial permutations
2011
We study the distribution of cycle lengths in models of nonuniform random permutations with cycle weights. We identify several regimes. Depending on the weights, the length of typical cycles grows like the total number n of elements, or a fraction of n or a logarithmic power of n.
Journal Article
Spatial random permutations with small cycle weights
2011
We consider the distribution of cycles in two models of random permutations, that are related to one another. In the first model, cycles receive a weight that depends on their length. The second model deals with permutations of points in the space and there is an additional weight that involves the length of permutation jumps. We prove the occurrence of infinite macroscopic cycles above a certain critical density.
Journal Article
Kac-Ward solution of the 2D classical and 1D quantum Ising models
2024
We give a rigorous derivation of the free energy of (i) the classical Ising model on the triangular lattice with translation-invariant coupling constants, and (ii) the one-dimensional quantum Ising model. We use the method of Kac and Ward. The novel aspect is that the coupling constants may have negative signs. We describe the logarithmic singularity of the specific heat of the classical model and the validity of the Cimasoni--Duminil-Copin--Li formula for the critical temperature. We also discuss the quantum phase transition of the quantum model.
Loop correlations in random wire models
2022
We introduce a family of loop soup models on the hypercubic lattice. The models involve links on the edges, and random pairings of the link endpoints on the sites. We conjecture that loop correlations of distant points are given by Poisson-Dirichlet correlations in dimensions three and higher. We prove that, in a specific random wire model that is related to the classical XY spin system, the probability that distant sites form an even partition is given by the Poisson-Dirichlet counterpart.
Universal behaviour of 3D loop soup models
2022
These notes describe several loop soup models and their {\\it universal behaviour} in dimensions greater or equal to 3. These loop models represent certain classical or quantum statistical mechanical systems. These systems undergo phase transitions that are characterised by changes in the structures of the loops. Namely, long-range order is equivalent to the occurrence of macroscopic loops. There are many such loops, and the joint distribution of their lengths is always given by a {\\it Poisson-Dirichlet distribution}. This distribution concerns random partitions and it is not widely known in statistical physics. We introduce it explicitly, and we explain that it is the invariant measure of a mean-field split-merge process. It is relevant to spatial models because the macroscopic loops are so intertwined that they behave effectively in mean-field fashion. This heuristics can be made exact and it allows to calculate the parameter of the Poisson-Dirichlet distribution. We discuss consequences about symmetry breaking in certain quantum spin systems.