Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
31
result(s) for
"Ueno, Taiji"
Sort by:
Listening deeper: neural networks unravel acoustic features in preterm infant crying
2025
Early infant crying provides critical insights into neurodevelopment, with atypical acoustic features linked to conditions such as preterm birth. However, previous studies have focused on limited and specific acoustic features, hindering a more comprehensive understanding of crying. To address this, we employed a convolutional neural network to assess whether whole Mel-spectrograms of infant crying capture gestational age (GA) variations (79 preterm infants; 52 term neonates). Our convolutional neural network models showed high accuracy in classifying gestational groups (92.4%) and in estimating the relative and continuous differences in GA (
r
= 0.73;
p
< 0.0001), outperforming previous studies. Grad-CAM and spectrogram manipulations further revealed that GA variations in infant crying were prominently reflected in temporal structures, particularly at the onset and offset regions of vocalizations. These findings suggest that decoding spectrotemporal features in infant crying through deep learning may offer valuable insights into atypical neurodevelopment in preterm infants, with potential to enhance early detection and intervention strategies in clinical practice.
Journal Article
Arousal increases neural gain via the locus coeruleus–noradrenaline system in younger adults but not in older adults
2018
In younger adults, arousal amplifies attentional focus to the most salient or goal-relevant information while suppressing other information. A computational model of how the locus coeruleus–noradrenaline system can implement this increased selectivity under arousal and a functional magnetic resonance imaging (fMRI) study comparing how arousal affects younger and older adults’ processing indicate that the amplification of salient stimuli and the suppression of non-salient stimuli are separate processes, with ageing affecting suppression without affecting amplification under arousal. In the fMRI study, arousal increased processing of salient stimuli and decreased processing of non-salient stimuli for younger adults. By contrast, for older adults, arousal increased processing of both low- and high-salience stimuli, generally increasing excitatory responses to visual stimuli. Older adults also showed a decline in locus coeruleus functional connectivity with frontoparietal networks that coordinate attentional selectivity. Thus, among older adults, arousal increases the potential for distraction from non-salient stimuli.
High arousal enables young people to better detect salient stimuli. In older people, arousal leads to increased processing of all stimuli. This difference can be explained by age-related changes in how the locus coeruleus–noradrenaline system interacts with cortical attention networks.
Journal Article
Why Verbalization of Non-Verbal Memory Reduces Recognition Accuracy: A Computational Approach to Verbal Overshadowing
2015
Verbal overshadowing refers to a phenomenon whereby verbalization of non-verbal stimuli (e.g., facial features) during the maintenance phase (after the target information is no longer available from the sensory inputs) impairs subsequent non-verbal recognition accuracy. Two primary mechanisms have been proposed for verbal overshadowing, namely the recoding interference hypothesis, and the transfer-inappropriate processing shift. The former assumes that verbalization renders non-verbal representations less accurate. In contrast, the latter assumes that verbalization shifts processing operations to a verbal mode and increases the chance of failing to return to non-verbal, face-specific processing operations (i.e., intact, yet inaccessible non-verbal representations). To date, certain psychological phenomena have been advocated as inconsistent with the recoding-interference hypothesis. These include a decline in non-verbal memory performance following verbalization of non-target faces, and occasional failures to detect a significant correlation between the accuracy of verbal descriptions and the non-verbal memory performance. Contrary to these arguments against the recoding interference hypothesis, however, the present computational model instantiated core processing principles of the recoding interference hypothesis to simulate face recognition, and nonetheless successfully reproduced these behavioral phenomena, as well as the standard verbal overshadowing. These results demonstrate the plausibility of the recoding interference hypothesis to account for verbal overshadowing, and suggest there is no need to implement separable mechanisms (e.g., operation-specific representations, different processing principles, etc.). In addition, detailed inspections of the internal processing of the model clarified how verbalization rendered internal representations less accurate and how such representations led to reduced recognition accuracy, thereby offering a computationally grounded explanation. Finally, the model also provided an explanation as to why some studies have failed to report verbal overshadowing. Thus, the present study suggests it is not constructive to discuss whether verbal overshadowing exists or not in an all-or-none manner, and instead suggests a better experimental paradigm to further explore this phenomenon.
Journal Article
Disruption of visual feature binding in working memory
2011
In a series of five experiments, we studied the effect of a visual suffix on the retention in short-term visual memory of both individual visual features and objects involving the binding of two features. Experiments 1A, 1B, and 2 involved suffixes consisting of features external to the to-be-remembered set and revealed a modest but equivalent disruption on individual and bound feature conditions. Experiments 3A and 3B involved suffixes comprising features that could potentially have formed part of the to-be-remembered set (but did not on that trial). Both experiments showed greater disruption of retention for objects comprising bound features than for their individual features. The results are interpreted as differentiating two components of suffix interference, one affecting memory for features and bindings equally, the other affecting memory for bindings. The general component is tentatively identified with the attentional cost of operating a filter to prevent the suffix from entering visual working memory, whereas the specific component is attributed to the particular fragility of bound representations when the filter fails.
Journal Article
What does visual suffix interference tell us about spatial location in working memory?
by
Castellà, Judit
,
Ueno, Taiji
,
Baddeley, Alan D.
in
Adult
,
Attention - physiology
,
Behavioral Science and Psychology
2015
A visual object can be conceived of as comprising a number of features bound together by their joint spatial location. We investigate the question of whether the spatial location is automatically bound to the features or whether the two are separable, using a previously developed paradigm whereby memory is disrupted by a visual suffix. Participants were shown a sample array of four colored shapes, followed by a postcue indicating the target for recall. On randomly intermixed trials, a to-be-ignored suffix array consisting of two different colored shapes was presented between the sample and the postcue. In a random half of suffix trials, one of the suffix items overlaid the location of the target. If location was automatically encoded, one might expect the colocation of target and suffix to differentially impair performance. We carried out three experiments, cuing for recall by spatial location (Experiment
1
), color or shape (Experiment
2
), or both randomly intermixed (Experiment
3
). All three studies showed clear suffix effects, but the colocation of target and suffix was differentially disruptive only when a spatial cue was used. The results suggest that purely visual shape–color binding can be retained and accessed without requiring information about spatial location, even when task demands encourage the encoding of location, consistent with the idea of an abstract and flexible visual working memory system.
Journal Article
Multiple high-reward items can be prioritized in working memory but with greater vulnerability to interference
2018
Emerging literature indicates that working memory and attention interact in determining what is retained over time, though the nature of this relationship and the impacts on performance across different task contexts remain to be mapped. In the present study, four experiments examined whether participants can prioritize one or more high-reward items within a four-item target array for the purposes of an immediate cued recall task, and the extent to which this mediates the disruptive impact of a postdisplay to-be-ignored suffix. All four experiments indicated that endogenous direction of attention toward high-reward items results in their improved recall. Furthermore, increasing the number of high-reward items from one to three (Experiments
1
–
3
) produces no decline in recall performance for those items, while associating each item in an array with a different reward value results in correspondingly graded levels of recall performance (Experiment
4
). These results suggest the ability to exert precise voluntary control in the prioritization of multiple targets. However, in line with recent outcomes drawn from serial visual memory, this endogenously driven focus on high-reward items results in greater susceptibility to exogenous suffix interference, relative to low-reward items. This contrasts with outcomes from cueing paradigms, indicating that different methods of attentional direction may not always result in equivalent outcomes on working memory performance.
Journal Article
The roles of the “ventral” semantic and “dorsal” pathways in conduite d'approche: a neuroanatomically-constrained computational modeling investigation
2013
Ever since the 19th century, the standard model for spoken language processing has assumed two pathways for repetition-a phonological pathway and a semantic pathway-and this idea has gained further support in the last decade. First, recent in vivo tractography studies have demonstrated both the \"dorsal\" (via arcuate fasciculus) and \"ventral\" (via extreme capsule and uncinate fasciculus) pathways connecting from the primary auditory area to the speech-motor area, the latter of which passes through a brain area associated with semantic processing (anterior temporal lobe). Secondly, neuropsychological evidence for the role of semantics in repetition is conduite d'approche, a successive phonological improvement (sometimes non-improvement) in aphasic patients' response by repeating several times in succession. Crucially, conduite d'approche is observed in patients with neurological damage in/around the arcuate fasciculus. Successful conduite d'approche is especially clear for semantically-intact patients and it occurs for real words rather than for non-words. These features have led researchers to hypothesize that the patients' disrupted phonological output is \"cleaned-up\" by intact lexical-semantic information before the next repetition. We tested this hypothesis using the neuroanatomically-constrained dual dorsal-ventral pathway computational model. The results showed that (a) damage to the dorsal pathway impaired repetition; (b) in the context of recovery, the model learned to compute a correct repetition response following the model's own noisy speech output (i.e., successful conduite d'approche); (c) this behavior was more evident for real words than non-words; and (d) activation from the ventral pathway contributed to the increased rate of successful conduite d'approche for real words. These results suggest that lexical-semantic \"clean-up\" is key to this self-correcting mechanism, supporting the classic proposal of two pathways for repetition.
Journal Article
The roles of long-term phonotactic and lexical prosodic knowledge in phonological short-term memory
by
Saito, Satoru
,
Ueno, Taiji
,
Tanida, Yuki
in
Accentuation
,
Age groups
,
Behavioral Science and Psychology
2015
Many previous studies have explored and confirmed the influence of long-term phonological representations on phonological short-term memory. In most investigations, phonological effects have been explored with respect to phonotactic constraints or frequency. If interaction between long-term memory and phonological short-term memory is a generalized principle, then other phonological characteristics—that is, suprasegmental aspects of phonology—should also exert similar effects on phonological short-term memory. We explored this hypothesis through three immediate serial-recall experiments that manipulated Japanese nonwords with respect to lexical prosody (pitch-accent type, reflecting suprasegmental characteristics) as well as phonotactic frequency (reflecting segmental characteristics). The results showed that phonotactic frequency affected the retention not only of the phonemic sequences, but also of pitch-accent patterns, when participants were instructed to recall both the phoneme sequence and accent pattern of nonwords. In addition, accent pattern typicality influenced the retention of the accent pattern: Typical accent patterns were recalled more accurately than atypical ones. These results indicate that both long-term phonotactic and lexical prosodic knowledge contribute to phonological short-term memory performance.
Journal Article