Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
85 result(s) for "Ueti, Massaro"
Sort by:
Serological and molecular detection of Babesia caballi and Theileria equi in Mexico: A prospective study
Equine piroplasmosis is a disease of horses, mules and donkeys, caused by the hemoprotozoans Babesia caballi and Theileria equi and transmitted by ticks of tropical and subtropical regions. Because the clinical signs are not specific, the diagnosis of equine piroplasmosis is difficult. In Mexico, where the environmental factors are conducive to the persistence of these pathogens, there is a lack of molecular studies to evaluate the occurrence of both parasites in horses. In the present study, matching serum and whole blood samples were obtained from 269 horses residing in 24 locations with tropical or subtropical climate and the presence of ticks. Testing of serum samples by ELISA demonstrated 55.7% seroprevalence of B . caballi and 68.4% prevalence of antibodies to T . equi . Blood samples analyzed with nPCR test were 7.8% positive to B . caballi and 78.8% positive to T . equi , while a duplex qPCR showed 15.24% positive samples to B . caballi and 59.11% to T . equi . From these results, 27 samples were sequenced for T . equi and 13 for B . caballi , confirming the presence of both horse parasites that cause equine piroplasmosis and suggesting that they are widespread in Mexico. This is the first study confirming the presence of B . caballi and T . equi in Mexico using both serological and molecular diagnostic methods. This study shows a high incidence of exposure to the etiological agents of equine piroplasmosis in horses in the studied areas.
Differential paired stage-specific expression of Babesia bovis cysteine-rich GCC2/GCC3 domain family proteins (BboGDP) during development within Rhipicephalus microplus
Background Babesia bovis , an intra-erythrocytic apicomplexan parasite, is one of the causative agents of bovine babesiosis, the most important tick-borne disease of cattle in tropical and subtropical regions. Babesia bovis has a complex life-cycle that includes sexual development within the tick vector. The development of a transmission blocking vaccine to control bovine babesiosis requires the identification of antigens displayed on the surface of the parasite during its development within tick vectors. Four B. bovis cysteine-rich GCC2/GCC3 domain protein (BboGDP) family members were previously identified and are differentially expressed as discrete pairs by either blood stages or kinetes. In this study we focused on two family members, BboGDP1 and -3, that are expressed by Babesia parasites during tick infection. Methods and results Transcription analysis using quantitative PCR demonstrated that BboGDP1 and -3 were upregulated in in vitro-induced sexual stage parasites and during parasite development in the tick midgut. Moreover, protein expression analysis of BboGDP1 and -3 during the development of sexual stages in in vitro culture was consistent with their transcription profile. Live immunofluorescence analysis using polyclonal antibodies confirmed surface expression of BboGDP1 and -3 on in vitro-induced sexual stage parasites. In addition, fixed immunofluorescence analysis showed reactivity of anti-BboGDP1 and -3 polyclonal antibodies to kinetes. Conclusions The collective data indicate that BboGDP1 and -3 are expressed by kinetes and on the surface of sexual stages of the parasites. The identified parasite surface membrane proteins BboGDP1 and -3 are potential candidates for the development of a B. bovis transmission blocking vaccine. Graphical Abstract
A U.S. isolate of Theileria orientalis, Ikeda genotype, is transmitted to cattle by the invasive Asian longhorned tick, Haemaphysalis longicornis
Background Theileria orientalis is a tick-borne hemoparasite that causes anemia, ill thrift, and death in cattle globally. The Ikeda strain of T. orientalis is more virulent than other strains, leading to severe clinical signs and death of up to 5% of affected animals. Within the Asia–Pacific region, where it affects 25% of Australian cattle, T. orientalis Ikeda has a significant economic impact on the cattle industry. In 2017, T. orientalis Ikeda was detected in a cattle herd in Albermarle County, Virginia, United States. Months earlier, the U.S. was alerted to the invasion of the Asian longhorned tick, Haemaphysalis longicornis, throughout the eastern U.S. Abundant H. longicornis ticks were identified on cattle in the T. orientalis- affected herd in VA, and a subset of ticks from the environment were PCR-positive for T. orientalis Ikeda. A strain of T. orientalis from a previous U.S. outbreak was not transmissible by H. longicornis ; however, H. longicornis is the primary tick vector of T. orientalis Ikeda in other regions of the world. Thus, the objective of this study was to determine whether invasive H. longicornis ticks in the U.S. are competent vectors of T. orientalis Ikeda. Methods Nymphal H. longicornis ticks were fed on a splenectomized calf infected with the VA-U.S.- T. orientalis Ikeda strain. After molting, a subset of adult ticks from this cohort were dissected, and salivary glands assayed for T. orientalis Ikeda via qPCR. The remaining adult ticks from the group were allowed to feed on three calves. Calves were subsequently monitored for T. orientalis Ikeda infection via blood smear cytology and PCR. Results After acquisition feeding on a VA-U.S.- T. orientalis Ikeda-infected calf as nymphs, a subset of molted adult tick salivary glands tested positive by qPCR for T. orientalis Ikeda. Adult ticks from the same cohort successfully transmitted T. orientalis Ikeda to 3/3 naïve calves, each of which developed parasitemia reaching 0.4–0.9%. Conclusions Our findings demonstrate that U.S. H. longicornis ticks are competent vectors of the VA-U.S.- T. orientalis Ikeda strain. This data provides important information for the U.S. cattle industry regarding the potential spread of this parasite and the necessity of enhanced surveillance and control measures. Graphical Abstract
Expression of 6-Cys Gene Superfamily Defines Babesia bovis Sexual Stage Development within Rhipicephalus microplus
Babesia bovis, an intra-erythrocytic tick-borne apicomplexan protozoan, is one of the causative agents of bovine babesiosis. Its life cycle includes sexual reproduction within cattle fever ticks, Rhipicephalus spp. Six B. bovis 6-Cys gene superfamily members were previously identified (A, B, C, D, E, F) where their orthologues in Plasmodium parasite have been shown to encode for proteins required for the development of sexual stages. The current study identified four additional 6-Cys genes (G, H, I, J) in the B. bovis genome. These four genes are described in the context of the complete ten 6-Cys gene superfamily. The proteins expressed by this gene family are predicted to be secreted or surface membrane directed. Genetic analysis comparing the 6-Cys superfamily among five distinct B. bovis strains shows limited sequence variation. Additionally, A, B, E, H, I and J genes were transcribed in B. bovis infected tick midgut while genes A, B and E were also transcribed in the subsequent B. bovis kinete stage. Transcription of gene C was found exclusively in the kinete. In contrast, transcription of genes D, F and G in either B. bovis infected midguts or kinetes was not detected. None of the 6-Cys transcripts were detected in B. bovis blood stages. Subsequent protein analysis of 6-Cys A and B is concordant with their transcript profile. The collective data indicate as in Plasmodium parasite, certain B. bovis 6-Cys family members are uniquely expressed during sexual stages and therefore, they are likely required for parasite reproduction. Within B. bovis specifically, proteins encoded by 6-Cys genes A and B are markers for sexual stages and candidate antigens for developing novel vaccines able to interfere with the development of B. bovis within the tick vector.
Successful completion of the life cycle of Amblyomma variegatum using tick artificial membrane feeding system
The three-host tick Amblyomma variegatum , commonly known as the tropical bont tick, poses a major threat to livestock health and productivity in tropical and subtropical regions worldwide. The inability to control the tick and prevent the diseases it transmits is partly due to the necessity of rearing the tick on animals. Thus, the goal of this study was to adapt a previously developed artificial membrane feeding system to complete the life cycle of A. variegatum . All life stages of A. variegatum were fed using fresh goat blood at 38 °C and blood replacement occurred every 12 h. Key parameters, such as humidity, temperature and membrane thickness were optimized to mimic natural tick feeding conditions. The attachment and engorgement rates for immature tick stages exceeded 80%, demonstrating high feeding success using the artificial system. Adult female reproductive performance was evidenced by an oviposition rate of 35%. The larvae resulting from these eggs exhibited feeding patterns comparable to larvae derived from female ticks fed on goats. Collectively, these findings demonstrate the feasibility of using an artificial feeding system to complete the breeding cycle of A. variegatum without the use of live hosts for tick engorgement. This study is the first to demonstrate the successful completion of the full life cycle of the tropical bont tick A. variegatum under in vitro conditions. Consequently, this innovative approach will facilitate further research to close the knowledge gap, including understanding tick-pathogen interactions and enabling the feeding of other tick species or hematophagous arthropods of human and veterinary importance.
Comparative immunoinformatic analysis of Rhipicephalus microplus cocktail vaccine targets
Background The cattle fever tick, Rhipicephalus microplus , is found in tropical and subtropical regions worldwide. Infestations of this tick lead to significant economic losses for cattle producers and dairy farmers, and the ticks can transmit a variety of pathogens that cause diseases such as babesiosis, anaplasmosis and theileriosis. The proteins Bm86, AQP1, AQP2 and VgR are expressed in various tick tissues, including the gut, salivary glands and ovaries. These proteins regulate essential physiological processes, including water balance (AQP1, AQP2), reproduction (VgR) and cell membrane integrity (Bm86). Methods Comprehensive bioinformatic and immunoinformatic analyses were conducted to evaluate Bm86, AQP1, AQP2 and VgR as potential vaccine targets against R. microplus . Specifically, we conducted studies on these proteins that included analysis of their physicochemical properties; topographical protein analyses; prediction of N-glycosylation sites, O-glycosylation sites, phosphorylation sites and B-cell and T-cell epitopes; and immune response simulation. The overall aim was to identify key epitopes and highlight their behavior within the host, representing a promising multicomponent vaccine formulation. Results The predictions for R. microplus Bm86, VgR, AQP1 and AQP2 proteins indicate strong antigenicity, low allergenicity and minimal toxicity, suggesting the potential for safe and effective immune response elicitation. The immune profile simulations for a cocktail of these proteins as vaccine candidates predicted consistently high levels of interferon-gamma and antibody isotypes, which could improve vaccine efficacy and control tick fitness and survivability in subsequent generations. Conclusions The application of immunoinformatic tools for anti-tick vaccination was validated for the investigation of combining R. microplus Bm86, VgR, AQP1 and AQP2 proteins as a potential cocktail vaccine candidate. Graphical abstract
Immunization of cattle with a Rhipicephalus microplus chitinase peptide containing predicted B-cell epitopes reduces tick biological fitness
Rhipicephalus microplus, the cattle fever tick, is the most important ectoparasite impacting the livestock industry worldwide. Overreliance on chemical treatments for tick control has led to the emergence of acaricide-resistant ticks and environmental contamination. An immunological strategy based on vaccines offers an alternative approach to tick control. To develop novel tick vaccines, it is crucial to identify and evaluate antigens capable of generating protection in cattle. Chitinases are enzymes that degrade older chitin at the time of moulting, therefore allowing interstadial metamorphosis. In this study, 1 R. microplus chitinase was identified and its capacity to reduce fitness in ticks fed on immunized cattle was evaluated. First, the predicted amino acid sequence was determined in 4 isolates and their similarity was analysed by bioinformatics. Four peptides containing predicted B-cell epitopes were designed. The immunogenicity of each peptide was assessed by inoculating 2 cattle, 4 times at 21 days intervals, and the antibody response was verified by indirect ELISA. A challenge experiment was conducted with those peptides that were immunogenic. The chitinase gene was successfully amplified and sequenced, enabling comparison with reference strains. Notably, a 99.32% identity and 99.84% similarity were ascertained among the sequences. Furthermore, native protein recognition was demonstrated through western blot assays. Chitinase peptide 3 reduced the weight and oviposition of engorged ticks, as well as larvae viability, exhibiting a 71% efficacy. Therefore, chitinase 3 emerges as a viable vaccine candidate, holding promise for its integration into a multiantigenic vaccine against R. microplus.
Structural and antigenic characterization of Babesia Bovis HAP2 domains
The tick-borne apicomplexan parasite Babesia bovis causes bovine babesiosis which leads to enormous food and economic losses around the world. The existing resources to manage this disease are limited and have pitfalls, therefore, introduction of new strategies is urgently needed. B. bovis reproduces sexually in the midgut of its tick vector. HAP2, a well conserved ancient protein, plays a crucial role in the gamete fusion of this parasite and is a strong candidate for developing transmission-blocking vaccines. We previously demonstrated that immunization of cattle with full size B. bovis HAP2 blocks transmission of the parasite by Rhipicephalus microplus . Understanding the conserved structural features and antigenicity of HAP2 protein and its domains will facilitate developing effective methods to control pathogen transmission. In this study, we analyzed and compared AlphaFold2-predicted 3D structure of B. bovis HAP2 with the well-characterized crystal structures of HAP2 of Chlamydomonas reinhardtii and Arabidopsis thaliana . The comparisons and structural analysis resulted in the definition of three domains’ sequences, fusion loops, and disulfide bonds in the B. bovis HAP2. In addition, recombinant versions of each three predicted HAP2 domains were recognized by antibodies from HAP2 immunized and transmission-protected cattle, confirming their antigenicity. Remarkably, domain II was highly recognized compared to the other two domains. This study introduces new directions in designing novel functional assays and improved vaccine design through targeting the HAP2 protein.
Expression of sex-specific molecular markers by Babesia bovis gametes
Background Bovine babesiosis caused by Babesia bovis is one of the most important tick-borne diseases of cattle in tropical and subtropical regions. Babesia bovis parasites have a complex lifecycle, including development within the mammalian host and tick vector. In the tick midgut, extracellular Babesia parasites transform into gametes that fuse to form zygotes. To date, little is known about genes and proteins expressed by male gametes. Methods and results We developed a method to separate male gametes from in vitro induced B. bovis culture. Separation enabled the validation of sex-specific markers. Collected male gametocytes were observed by Giemsa-stained smear and live-cell fluorescence microscopy. Babesia male gametes were used to confirm sex-specific markers by quantitative real-time PCR. Some genes were found to be male gamete specific genes including pka , hap2 , α-tubulin II and znfp2 . However, α-tubulin I and ABC transporter, trap2-4 and ccp1-3 genes were found to be upregulated in culture depleted of male gametes (female-enriched). Live immunofluorescence analysis using polyclonal antibodies confirmed surface expression of HAP2 by male and TRAP2-4 by female gametes. These results revealed strong markers to distinguish between B. bovis male and female gametes. Conclusions Herein, we describe the identification of sex-specific molecular markers essential for B. bovis sexual reproduction. These tools will enhance our understanding of the biology of sexual stages and, consequently, the development of additional strategies to control bovine babesiosis. Graphical Abstract
The Babesia bovis hap2 gene is not required for blood stage replication, but expressed upon in vitro sexual stage induction
Babesia bovis, is a tick borne apicomplexan parasite responsible for important cattle losses globally. Babesia parasites have a complex life cycle including asexual replication in the mammalian host and sexual reproduction in the tick vector. Novel control strategies aimed at limiting transmission of the parasite are needed, but transmission blocking vaccine candidates remain undefined. Expression of HAP2 has been recognized as critical for the fertilization of parasites in the Babesia-related Plasmodium, and is a leading candidate for a transmission blocking vaccine against malaria. Hereby we identified the B. bovis hap2 gene and demonstrated that it is widely conserved and differentially transcribed during development within the tick midgut, but not by blood stage parasites. The hap2 gene was disrupted by transfecting B. bovis with a plasmid containing the flanking regions of the hap2 gene and the GPF-BSD gene under the control of the ef-1α-B promoter. Comparison of in vitro growth between a hap2-KO B. bovis clonal line and its parental wild type strain showed that HAP2 is not required for the development of B. bovis in erythrocytes. However, xanthurenic acid-in vitro induction experiments of sexual stages of parasites recovered after tick transmission resulted in surface expression of HAP2 exclusively in sexual stage induced parasites. In addition, hap2-KO parasites were not able to develop such sexual stages as defined both by morphology and by expression of the B. bovis sexual marker genes 6-Cys A and B. Together, the data strongly suggests that tick midgut stage differential expression of hap2 is associated with the development of B. bovis sexual forms. Overall these studies are consistent with a role of HAP2 in tick stages of the parasite and suggest that HAP2 is a potential candidate for a transmission blocking vaccine against bovine babesiosis.