Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
111
result(s) for
"Ullrich, Susanne"
Sort by:
Metabolic implications of pancreatic fat accumulation
by
Hans-Ulrich, Häring
,
Heni Martin
,
Solimena Michele
in
Adipose tissue
,
Diabetes
,
Diabetes mellitus (non-insulin dependent)
2022
Fat accumulation outside subcutaneous adipose tissue often has unfavourable effects on systemic metabolism. In addition to non-alcoholic fatty liver disease, which has received considerable attention, pancreatic fat has become an important area of research throughout the past 10 years. While a number of diagnostic approaches are available to quantify pancreatic fat, multi-echo Dixon MRI is currently the most developed method. Initial studies have shown associations between pancreatic fat and the metabolic syndrome, impaired glucose metabolism and type 2 diabetes mellitus. Pancreatic fat is linked to reduced insulin secretion, at least under specific circumstances such as prediabetes, low BMI and increased genetic risk of type 2 diabetes mellitus. This Review summarizes the possible causes and metabolic consequences of pancreatic fat accumulation. In addition, potential therapeutic approaches for addressing pancreatic fat accumulation are discussed.There is growing evidence that fat accumulation in the pancreas can have consequences for metabolic health. This Review discusses the methods for detecting pancreatic fat and the potential causes and pathogenic consequences of pancreatic fat accumulation.
Journal Article
Metabolic crosstalk between fatty pancreas and fatty liver: effects on local inflammation and insulin secretion
by
Sipos, Bence
,
Siegel-Axel, Dorothea
,
Nadalin, Silvio
in
Adipocytes
,
Adiponectin
,
alpha-2-HS-Glycoprotein - metabolism
2017
Aims/hypothesis
Obesity-linked ectopic fat accumulation is associated with the development of type 2 diabetes. Whether pancreatic and liver steatosis impairs insulin secretion is controversial. We examined the crosstalk of human pancreatic fat cells with islets and the role of diabetogenic factors, i.e. palmitate and fetuin-A, a hepatokine released from fatty liver.
Methods
Human pancreatic resections were immunohistochemically stained for insulin, glucagon, somatostatin and the macrophage/monocyte marker CD68. Pancreatic adipocytes were identified by Oil Red O and adiponectin staining. Primary pancreatic pre-adipocytes and differentiated adipocytes were co-cultured with human islets isolated from organ donors and the metabolic crosstalk between fatty liver and fatty pancreas was mimicked by the addition of palmitate and fetuin-A. Insulin secretion was evaluated by ELISA and RIA. Cytokine expression and secretion were assessed by RT-PCR and multiplex assay, respectively. Subcellular distribution of proteins was examined by confocal microscopy and protein phosphorylation by western blotting.
Results
In human pancreatic parenchyma, highly differentiated adipocytes were detected in the proximity of islets with normal architecture and hormone distribution. Infiltration of adipocytes was associated with an increased number of CD68-positive cells within islets. In isolated primary pancreatic pre-adipocytes and differentiated adipocytes, palmitate and fetuin-A induced
IL6
,
CXCL8
and
CCL2
mRNA expression. Cytokine production was toll-like receptor 4 (TLR4)-dependent and further accentuated in pre-adipocytes when co-cultured with islets. In islets,
IL6
and
CXCL8
mRNA levels were also increased by fetuin-A and palmitate. Only in macrophages within the isolated islets, palmitate and fetuin-A stimulated the production of the cytotoxic cytokine IL-1β. Palmitate, but not fetuin-A, exerted pro-apoptotic effects in islet cells. Instead, fetuin-A impaired glucose-induced insulin secretion in a TLR4-independent, but c-Jun N-terminal kinase- and Ca
2+
-dependent, manner.
Conclusions/interpretation
These results provide the first evidence that fetuin-A-mediated metabolic crosstalk of fatty liver with islets may contribute to obesity-linked glucose blindness of beta cells, while fatty pancreas may exacerbate local inflammation.
Journal Article
Glucose homeostasis is regulated by pancreatic β-cell cilia via endosomal EphA-processing
2019
Diabetes mellitus
affects one in eleven adults worldwide. Most suffer from Type 2
Diabetes
which features elevated blood glucose levels and an inability to adequately secrete or respond to insulin. Insulin producing β-cells have primary cilia which are implicated in the regulation of glucose metabolism, insulin signaling and secretion. To better understand how β-cell cilia affect glucose handling, we ablate cilia from mature β-cells by deleting key cilia component
Ift88
. Here we report that glucose homeostasis and insulin secretion deteriorate over 12 weeks post-induction. Cilia/basal body components are required to suppress spontaneous auto-activation of EphA3 and hyper-phosphorylation of EphA receptors inhibits insulin secretion. In β-cells, loss of cilia/basal body function leads to polarity defects and epithelial-to-mesenchymal transition. Defective insulin secretion from IFT88-depleted human islets and elevated pEPHA3 in islets from diabetic donors both point to a role for cilia/basal body proteins in human glucose homeostasis.
Primary cilia have been proposed to regulate glucose metabolism and insulin secretion in beta cells, but it is not known how. Here the authors show that primary cilia play a role in adult β-cell function via a mechanism involving endosomal EphA-processing.
Journal Article
Simulated and Experimental Time-Resolved Photoelectron Spectra of the Intersystem Crossing Dynamics in 2-Thiouracil
2018
We report time-dependent photoelectron spectra recorded with a single-photon ionization setup and extensive simulations of the same spectra for the excited-state dynamics of 2-thiouracil (2TU) in the gas phase. We find that single-photon ionization produces very similar results as two-photon ionization, showing that the probe process does not have a strong influence on the measured dynamics. The good agreement between the single-photon ionization experiments and the simulations shows that the norms of Dyson orbitals allow for qualitatively describing the ionization probabilities of 2TU. This reasonable performance of Dyson norms is attributed to the particular electronic structure of 2TU, where all important neutral and ionic states involve similar orbital transitions and thus the shape of the Dyson orbitals do not strongly depend on the initial neutral and final ionic state. We argue that similar situations should also occur in other biologically relevant thio-nucleobases, and that the time-resolved photoelectron spectra of these bases could therefore be adequately modeled with the techniques employed here.
Journal Article
Effects of adrenergic-stimulated lipolysis and cytokine production on in vitro mouse adipose tissue–islet interactions
by
Juarez-Lopez, David
,
Ullrich, Susanne
,
Gerst, Felicia
in
692/163
,
692/163/2743
,
692/163/2743/137
2022
Inflammatory cytokines and non-esterified fatty acids (NEFAs) are obesity-linked factors that disturb insulin secretion. The aim of this study was to investigate whether pancreatic adipose tissue (pWAT) is able to generate a NEFA/cytokine overload within the pancreatic environment and as consequence to impact on insulin secretion. Pancreatic fat is a minor fat depot, therefore we used high-fat diet (HFD) feeding to induce pancreatic steatosis in mice. Relative
Adipoq
and
Lep
mRNA levels were higher in pWAT of HFD compared to chow diet mice. Regardless of HFD,
Adipoq
and
Lep
mRNA levels of pWAT were at least 10-times lower than those of epididymal fat (eWAT). Lipolysis stimulating receptors
Adrb3
and
Npr1
were expressed in pWAT and eWAT, and HFD reduced their expression in eWAT only. In accordance, HFD impaired lipolysis in eWAT but not in pWAT. Despite expression of
Npr
mRNA, lipolysis was stimulated solely by the adrenergic agonists, isoproterenol and adrenaline. Short term co-incubation of islets with CD/HFD pWAT did not alter insulin secretion. In the presence of CD/HFD eWAT, glucose stimulated insulin secretion only upon isoproterenol-induced lipolysis, i.e. in the presence of elevated NEFA. Isoproterenol augmented
Il1b and Il6
mRNA levels both in pWAT and eWAT. These results suggest that an increased sympathetic activity enhances NEFA and cytokine load of the adipose microenvironment, including that of pancreatic fat, and by doing so it may alter beta-cell function.
Journal Article
Functional Analysis of the Magnetosome Island in Magnetospirillum gryphiswaldense: The mamAB Operon Is Sufficient for Magnetite Biomineralization
2011
Bacterial magnetosomes are membrane-enveloped, nanometer-sized crystals of magnetite, which serve for magnetotactic navigation. All genes implicated in the synthesis of these organelles are located in a conserved genomic magnetosome island (MAI). We performed a comprehensive bioinformatic, proteomic and genetic analysis of the MAI in Magnetospirillum gryphiswaldense. By the construction of large deletion mutants we demonstrate that the entire region is dispensable for growth, and the majority of MAI genes have no detectable function in magnetosome formation and could be eliminated without any effect. Only <25% of the region comprising four major operons could be associated with magnetite biomineralization, which correlated with high expression of these genes and their conservation among magnetotactic bacteria. Whereas only deletion of the mamAB operon resulted in the complete loss of magnetic particles, deletion of the conserved mms6, mamGFDC, and mamXY operons led to severe defects in morphology, size and organization of magnetite crystals. However, strains in which these operons were eliminated together retained the ability to synthesize small irregular crystallites, and weakly aligned in magnetic fields. This demonstrates that whereas the mamGFDC, mms6 and mamXY operons have crucial and partially overlapping functions for the formation of functional magnetosomes, the mamAB operon is the only region of the MAI, which is necessary and sufficient for magnetite biomineralization. Our data further reduce the known minimal gene set required for magnetosome formation and will be useful for future genome engineering approaches.
Journal Article
Mercury in the Aquatic Environment: A Review of Factors Affecting Methylation
by
Abdrashitova, Svetlana A.
,
Ullrich, Susanne M.
,
Tanton, Trevor W.
in
Applied sciences
,
Aquatic environment
,
bioaccumulation
2001
Mercury is one of the most hazardous contaminants that may be present in the aquatic environment, but its ecological and toxicological effects are strongly dependent on the chemical species present. Species distribution and transformation processes in natural aquatic systems are controlled by various physical, chemical, and biological factors. Depending on the prevailing environmental conditions, inorganic mercury species may be converted to many times more toxic methylated forms such as methylmercury, a potent neurotoxin that is readily accumulated by aquatic biota. Despite a considerable amount of literature on the subject, the behavior of mercury and many of the transformation and distribution mechanisms operating in the natural aquatic environment are still poorly understood. This review examines the current state of knowledge on the physicochemical behavior of mercury in the aquatic environment, and in particular the environmental factors influencing its transformation into highly toxic methylated forms.
Journal Article
Glucose, adrenaline and palmitate antagonistically regulate insulin and glucagon secretion in human pseudoislets
2019
Isolated human islets do not always meet the quality standards required for transplant survival and reliable functional
in vitro
studies. The formation of pseudoislets, i.e. the reaggregation of a defined number of islet cells after dissociation, improves insulin secretion. We present a simple method of pseudoislet formation from human islet cells and assess the transcriptome and function of isolated human islets and pseudoislets from the same organ donors. Following pseudoislet formation, insulin content/DNA and mRNA/RPS13 resembled that of islets. In pseudoislets, glucose-stimulated insulin secretion (GSIS) was significantly higher (8–13-fold) than in islets (2–4-fold). GSIS of pseudoislets was partly inhibited by the glucagon-like peptide-1 receptor (GLP-1R) antagonist exendin-9. The stimulatory effects of palmitate and forskolin at 12 mM glucose were also significantly higher in pseudoislets than in islets. Further analysis of pseudoislets revealed that regulation of secretion and insulin and glucagon content was maintained over a longer culture period (6–14 d). While adrenaline inhibited GSIS, adrenaline together with palmitate stimulated glucagon secretion 2-fold at low glucose, an effect suppressed by high glucose. Transcriptome analysis revealed that, unlike islets, pseudoislets were deprived of exocrine and endothelial cells. In conclusion, pseudoislet formation restores functional integrity of human islet cells and allows long-term
in vitro
testing.
Journal Article
Primary Processes Underlying the Photostability of Isolated DNA Bases: Adenine
by
Patchkovskii, Serguei
,
Satzger, Helmut
,
Ullrich, Susanne
in
Adenine - chemistry
,
Atoms
,
Biological Sciences
2006
The UV chromophores in DNA are the nucleic bases themselves, and it is their photophysics and photochemistry that govern the intrinsic photostability of DNA. Because stability is related to the conversion of dangerous electronic to less-dangerous vibrational energy, we study ultrafast electronic relaxation processes in the DNA base adenine. We excite adenine, isolated in a molecular beam, to its ππ* state and follow its relaxation dynamics using femtosecond time-resolved photoelectron spectroscopy. To discern which processes are important on which timescales, we compare adenine with 9-methyl adenine. Methylation blocks the site of the much-discussed πσ* state that had been thought, until now, minor. Time-resolved photoelectron spectroscopy reveals that, although adenine and 9-methyl adenine show almost identical timescales for the processes involved, the decay pathways are quite different. Importantly, we confirm that in adenine at 267-nm excitation, the πσ* state plays a major role. We discuss these results in the context of recent experimental and theoretical studies on adenine, proposing a model that accounts for all known results, and consider the relationship between these studies and electron-induced damage in DNA.
Journal Article
Palmitate and insulin counteract glucose-induced thioredoxin interacting protein (TXNIP) expression in insulin secreting cells via distinct mechanisms
by
Kaiser, Gabriele
,
Ullrich, Susanne
,
Mühlbauer, Eckhard
in
1-Phosphatidylinositol 3-kinase
,
AKT protein
,
Analysis
2018
Glucose and palmitate synergistically stimulate insulin secretion, but chronically elevated they induce apoptotic β-cell death. The glucotoxic effect has been attributed, at least partly, to the upregulation of the oxidative stress marker thioredoxin interacting protein (TXNIP). Palmitate downregulates TXNIP expression, the functional significance of which is still under debate. This study examines the mechanism and consequence of palmitate-mediated TXNIP regulation in insulin secreting cells. Palmitate (600 μM) reduced TXNIP mRNA levels in isolated human and mouse islets independently of FFAR1/GPR40. Similar effects of palmitate were observed in INS-1E cells and mimicked by other long chain fatty acids. The lowering of TXNIP mRNA was significant already 1 h after addition of palmitate, persisted for 24 h and was directly translated to changes in TXNIP protein. The pharmacological inhibition of palmitate-induced phosphorylation of AMPK, ERK1/2, JNK and PKCα/β by BML-275, PD98059, SP600125 and Gö6976, respectively, did not abolish palmitate-mediated TXNIP downregulation. The effect of palmitate was superimposed by a time-dependent (8 h and 24 h) decline of TXNIP mRNA and protein. This decline correlated with accumulation of secreted insulin into the medium. Accordingly, exogenously added insulin reduced TXNIP mRNA and protein levels, an effect counteracted by the insulin/IGF-1 receptor antagonist linsitinib. The inhibition of PI3K and Akt/PKB increased TXNIP mRNA levels. The histone deacetylase (HDAC1/2/3) inhibitor MS-275 completely abrogated the time-dependent, insulin-mediated reduction of TXNIP, leaving the effect of palmitate unaltered. Acute stimulation of insulin secretion and chronic accentuation of cell death by palmitate occurred independently of TXNIP regulation. On the contrary, palmitate antagonized glucose-augmented ROS production. In conclusion, glucose-induced TXNIP expression is efficiently antagonized by two independent mechanisms, namely via an autocrine activation of insulin/IGF-1 receptors involving HDAC and by palmitate attenuating oxidative stress of β-cells.
Journal Article