Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Language
      Language
      Clear All
      Language
  • Subject
      Subject
      Clear All
      Subject
  • Item Type
      Item Type
      Clear All
      Item Type
  • Discipline
      Discipline
      Clear All
      Discipline
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
271 result(s) for "Unité de recherche sur les Biopolymères, Interactions Assemblages (BIA) "
Sort by:
Ion Mobility Spectrometry in Food Analysis: Principles, Current Applications and Future Trends
In the last decade, ion mobility spectrometry (IMS) has reemerged as an analytical separation technique, especially due to the commercialization of ion mobility mass spectrometers. Its applicability has been extended beyond classical applications such as the determination of chemical warfare agents and nowadays it is widely used for the characterization of biomolecules (e.g., proteins, glycans, lipids, etc.) and, more recently, of small molecules (e.g., metabolites, xenobiotics, etc.). Following this trend, the interest in this technique is growing among researchers from different fields including food science. Several advantages are attributed to IMS when integrated in traditional liquid chromatography (LC) and gas chromatography (GC) mass spectrometry (MS) workflows: (1) it improves method selectivity by providing an additional separation dimension that allows the separation of isobaric and isomeric compounds; (2) it increases method sensitivity by isolating the compounds of interest from background noise; (3) and it provides complementary information to mass spectra and retention time, the so-called collision cross section (CCS), so compounds can be identified with more confidence, either in targeted or non-targeted approaches. In this context, the number of applications focused on food analysis has increased exponentially in the last few years. This review provides an overview of the current status of IMS technology and its applicability in different areas of food analysis (i.e., food composition, process control, authentication, adulteration and safety).
A fungal family of lytic polysaccharide monooxygenase-like copper proteins
Lytic polysaccharide monooxygenases (LPMOs) are copper-containing enzymes that play a key role in the oxidative degradation of various biopolymers such as cellulose and chitin. While hunting for new LPMOs, we identified a new family of proteins, defined here as X325, in various fungal lineages. The three-dimensional structure of X325 revealed an overall LPMO fold and a His brace with an additional Asp ligand to Cu(II). Although LPMO-type activity of X325 members was initially expected, we demonstrated that X325 members do not perform oxidative cleavage of polysaccharides, establishing that X325s are not LPMOs. Investigations of the biological role of X325 in the ectomycorrhizal fungus Laccaria bicolor revealed exposure of the X325 protein at the interface between fungal hyphae and tree rootlet cells. Our results provide insights into a family of copper-containing proteins, which is widespread in the fungal kingdom and is evolutionarily related to LPMOs, but has diverged to biological functions other than polysaccharide degradation.
The wheat grain contains pectic domains exhibiting specific spatial and development-associated distribution
Cell walls are complex structures surrounding plant cells with a composition that varies among species and even within a species between organs, cell types and development stages. For years, cell walls in wheat grains were described as simple walls consisting mostly of arabinoxylans and mixed-linked beta glucans. Proteomic and transcriptomic studies identified enzyme families involved in the synthesis of many more cell wall polysaccharides in the wheat grains. Here we describe the discovery of pectic domains in wheat grain using monoclonal antibodies and enzymatic treatment to degrade the major cell wall polymers. Distinct spatial distributions were observed for rhamnogalacturonan I present in the endosperm and mostly in the aleurone layer and homogalacturonan especially found in the outer layers, and tight developmental regulations were unveiled. We also uncovered a massive deposition of homogalacturonan via large vesicular bodies in the seed coat (testa) beneath a thick cuticle during development. Our findings raise questions about the function of pectin in wheat grain.
Multiscale analysis of hydrated gluten structure and phase distribution under thermal treatments
The present study displays a comprehensive investigation into the micro- and macrostructures of gluten and its responses to temperature-induced changes, employing various analytical techniques. The integration of time domain-nuclear magnetic resonance (TD-NMR), differential scanning calorimetry (DSC), size-exclusion high-performance liquid chromatography (SE-HPLC), field emission scanning electron microscopy (FESEM), solid-state nuclear magnetic resonance (ssNMR), and multiphoton laser microscopy (MLM) measurements facilitates the multidimensional examination of gluten’s phase distribution and structure across various scales. Notably, TD-NMR helps to refine prior T2 assignments for hydrated gluten through dynamic T2 measurements at sub-zero temperatures. The innovative application of TD-NMR uncovers insights into freezable water quantities and their changes under varying temperature conditions. Through real-time analyses utilizing not only TD-NMR but also MLM techniques, along with SE-HPLC measurements, the study highlights increased lacunarities in the gluten structure, particularly between 60 and 85 °C. These structural changes are attributed to heating effects that unfold and denature proteins and culminate in aggregation and crosslinking phenomena, leading to the release of water into macropores, hence changes in the water distribution in the gluten matrix.
Mixed-Linkage Glucan Is the Main Carbohydrate Source and Starch Is an Alternative Source during Brachypodium Grain Germination
Seeds of the model grass Brachypodium distachyon are unusual because they contain very little starch and high levels of mixed-linkage glucan (MLG) accumulated in thick cell walls. It was suggested that MLG might supplement starch as a storage carbohydrate and may be mobilised during germination. In this work, we observed massive degradation of MLG during germination in both endosperm and nucellar epidermis. The enzymes responsible for the MLG degradation were identified in germinated grains and characterized using heterologous expression. By using mutants targeting MLG biosynthesis genes, we showed that the expression level of genes coding for MLG and starch-degrading enzymes was modified in the germinated grains of knocked-out cslf6 mutants depleted in MLG but with higher starch content. Our results suggest a substrate-dependent regulation of the storage sugars during germination. These overall results demonstrated the function of MLG as the main carbohydrate source during germination of Brachypodium grain. More astonishingly, cslf6 Brachypodium mutants are able to adapt their metabolism to the lack of MLG by modifying the energy source for germination and the expression of genes dedicated for its use.
Fermentation of Gluten by Lactococcus lactis LLGKC18 Reduces its Antigenicity and Allergenicity
Wheat is a worldwide staple food, yet some people suffer from strong immunological reactions after ingesting wheat-based products. Lactic acid bacteria (LAB) constitute a promising approach to reduce wheat allergenicity because of their proteolytic system. In this study, 172 LAB strains were screened for their proteolytic activity on gluten proteins and α-amylase inhibitors (ATIs) by SDS-PAGE and RP-HPLC. Gliadins, glutenins, and ATI antigenicity and allergenicity were assessed by Western blot/Dot blot and by degranulation assay using RBL-SX38 cells. The screening resulted in selecting 9 high gluten proteolytic strains belonging to two species: Enterococcus faecalis and Lactococcus lactis . Proteomic analysis showed that one of selected strains, Lc. lactis LLGKC18, caused degradation of the main gluten allergenic proteins. A significant decrease of the gliadins, glutenins, and ATI antigenicity was observed after fermentation of gluten by Lc. lactis LLGKC18, regardless the antibody used in the tests. Also, the allergenicity as measured by the RBL-SX38 cell degranulation test was significantly reduced. These results indicate that Lc. lactis LLGKC18 gluten fermentation can be deeply explored for its capability to hydrolyze the epitopes responsible for wheat allergy.
Evaluation of open search methods based on theoretical mass spectra comparison
Background Mass spectrometry remains the privileged method to characterize proteins. Nevertheless, most of the spectra generated by an experiment remain unidentified after their analysis, mostly because of the modifications they carry. Open Modification Search (OMS) methods offer a promising answer to this problem. However, assessing the quality of OMS identifications remains a difficult task. Methods Aiming at better understanding the relationship between (1) similarity of pairs of spectra provided by OMS methods and (2) relevance of their corresponding peptide sequences, we used a dataset composed of theoretical spectra only, on which we applied two OMS strategies. We also introduced two appropriately defined measures for evaluating the above mentioned spectra/sequence relevance in this context: one is a color classification representing the level of difficulty to retrieve the proper sequence of the peptide that generated the identified spectrum ; the other, called LIPR, is the proportion of common masses, in a given Peptide Spectrum Match (PSM), that represent dissimilar sequences. These two measures were also considered in conjunction with the False Discovery Rate (FDR). Results According to our measures, the strategy that selects the best candidate by taking the mass difference between two spectra into account yields better quality results. Besides, although the FDR remains an interesting indicator in OMS methods (as shown by LIPR), it is questionable: indeed, our color classification shows that a non negligible proportion of relevant spectra/sequence interpretations corresponds to PSMs coming from the decoy database. Conclusions The three above mentioned measures allowed us to clearly determine which of the two studied OMS strategies outperformed the other, both in terms of number of identifications and of accuracy of these identifications. Even though quality evaluation of PSMs in OMS methods remains challenging, the study of theoretical spectra is a favorable framework for going further in this direction.
Beating of hemp bast fibres: an examination of a hydro-mechanical treatment on chemical, structural, and nanomechanical property evolutions
In this study, a gradually increased hydro-mechanical treatments duration were applied to native hemp bast fibres with a traditional pulp and paper beating device (laboratory Valley beater). There is often a trade-off between the treatment applied to the fibres and the effect on their integrity. The multimodal analysis provided an understanding of the beating impact on the fibres at multiple scales and the experimental design made it possible to distinguish the effects of hydro- and hydro-mechanical treatment. Porosity analyses showed that beating treatment doubled the macroporosity and possibly reduced nanoporosity between the cellulose microfibrils. The beating irregularly extracted the amorphous components known to be preferentially located in the middle lamellae and the primary cell walls rather than in the secondary walls, the overall increasing the crystallinity of cellulose from 49.3 to 59.1%, but a non-significant change in the indentation moduli of the cell wall was observed. In addition, beating treatments with two distinct mechanical severities showed a disorganization of the cellulose conformation, which significant dropped the indention moduli by 11.2 GPa and 8.4 GPa for 10 and 20 min of Valley beater hydro-mechanical treatment, respectively, compared to hydro-treated hemp fibres (16.6 GPa). Pearson’s correlation coefficients between physicochemical features and the final indentation moduli were calculated. Strong positive correlations were highlighted between the cellulose crystallinity and rhamnose, galactose and mannose as non-cellulosic polysaccharide components of the cell wall.
Changing surface grafting density has an effect on the activity of immobilized xylanase towards natural polysaccharides
Enzymes are involved in various types of biological processes. In many cases, they are part of multi-component machineries where enzymes are localized in close proximity to each-other. In such situations, it is still not clear whether inter-enzyme spacing actually plays a role or if the colocalization of complementary activities is sufficient to explain the efficiency of the system. Here, we focus on the effect of spatial proximity when identical enzymes are immobilized onto a surface. By using an innovative grafting procedure based on the use of two engineered protein fragments, Jo and In, we produce model systems in which enzymes are immobilized at surface densities that can be controlled precisely. The enzyme used is a xylanase that participates to the hydrolysis of plant cell wall polymers. By using a small chromogenic substrate, we first show that the intrinsic activity of the enzymes is fully preserved upon immobilization and does not depend on surface density. However, when using beechwood xylan, a naturally occurring polysaccharide, as substrate, we find that the enzymatic efficiency decreases by 10-60% with the density of grafting. This unexpected result is probably explained through steric hindrance effects at the nanoscale that hinder proper interaction between the enzymes and the polymer. A second effect of enzyme immobilization at high densities is the clear tendency for the system to release preferentially shorter oligosaccharides from beechwood xylan as compared to enzymes in solution.
Cell Wall Proteome of Wheat Grain Endosperm and Outer Layers at Two Key Stages of Early Development
The cell wall is an important compartment in grain cells that fulfills both structural and functional roles. It has a dynamic structure that is constantly modified during development and in response to biotic and abiotic stresses. Non-structural cell wall proteins (CWPs) are key players in the remodeling of the cell wall during events that punctuate the plant life. Here, a subcellular and quantitative proteomic approach was carried out to identify CWPs possibly involved in changes in cell wall metabolism at two key stages of wheat grain development: the end of the cellularization step and the beginning of storage accumulation. Endosperm and outer layers of wheat grain were analyzed separately as they have different origins (maternal and seed) and functions in grains. Altogether, 734 proteins with predicted signal peptides were identified (CWPs). Functional annotation of CWPs pointed out a large number of proteins potentially involved in cell wall polysaccharide remodeling. In the grain outer layers, numerous proteins involved in cutin formation or lignin polymerization were found, while an unexpected abundance of proteins annotated as plant invertase/pectin methyl esterase inhibitors were identified in the endosperm. In addition, numerous CWPs were accumulating in the endosperm at the grain filling stage, thus revealing strong metabolic activities in the cell wall during endosperm cell differentiation, while protein accumulation was more intense at the earlier stage of development in outer layers. Altogether, our work gives important information on cell wall metabolism during early grain development in both parts of the grain, namely the endosperm and outer layers. The wheat cell wall proteome is the largest cell wall proteome of a monocot species found so far.