Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
LanguageLanguage
-
SubjectSubject
-
Item TypeItem Type
-
DisciplineDiscipline
-
YearFrom:-To:
-
More FiltersMore FiltersIs Peer Reviewed
Done
Filters
Reset
173
result(s) for
"University of California [Davis] (UC Davis) "
Sort by:
Seed filling in domesticated maize and rice depends on SWEET-mediated hexose transport
by
Reproduction et développement des plantes (RDP) ; École normale supérieure de Lyon (ENS de Lyon) ; Université de Lyon-Université de Lyon-Institut National de la Recherche Agronomique (INRA)-Université Claude Bernard Lyon 1 (UCBL) ; Université de Lyon-Centre National de la Recherche Scientifique (CNRS)
,
Department of Plant Biology ; Carnegie Institution for Science
,
Sasse, Joelle
in
13/106
,
13/109
,
14/19
2015
Carbohydrate import into seeds directly determines seed size and must have been increased through domestication. However, evidence of the domestication of sugar translocation and the identities of seed-filling transporters have been elusive. Maize ZmSWEET4c, as opposed to its sucrose-transporting homologs, mediates transepithelial hexose transport across the basal endosperm transfer layer (BETL), the entry point of nutrients into the seed, and shows signatures indicative of selection during domestication. Mutants of both maize ZmSWEET4c and its rice ortholog OsSWEET4 are defective in seed filling, indicating that a lack of hexose transport at the BETL impairs further transfer of sugars imported from the maternal phloem. In both maize and rice, SWEET4 was likely recruited during domestication to enhance sugar import into the endosperm.
Journal Article
CESA TRAFFICKING INHIBITOR Inhibits Cellulose Deposition and Interferes with the Trafficking of Cellulose Synthase Complexes and Their Associated Proteins KORRIGAN1 and POM2/CELLULOSE SYNTHASE INTERACTIVE PROTEIN1
by
Worden, Natasha
,
Department of Plant Biology [Carnegie] (DPB) ; Carnegie Institution for Science
,
Wilkop, Thomas E
in
Anisotropy
,
Arabidopsis
,
Arabidopsis - cytology
2015
Cellulose synthase complexes (CSCs) at the plasma membrane (PM) are aligned with cortical microtubules (MTs) and direct the biosynthesis of cellulose. The mechanism of the interaction between CSCs and MTs, and the cellular determinants that control the delivery of CSCs at the PM, are not yet well understood. We identified a unique small molecule, CESA TRAFFICKING INHIBITOR (CESTRIN), which reduces cellulose content and alters the anisotropic growth of Arabidopsis (Arabidopsis thaliana) hypocotyls. We monitored the distribution and mobility of fluorescently labeled cellulose synthases (CESAs) in live Arabidopsis cells under chemical exposure to characterize their subcellular effects. CESTRIN reduces the velocity of PM CSCs and causes their accumulation in the cell cortex. The CSC-associated proteins KORRIGAN1 (KOR1) and POM2/CELLULOSE SYNTHASE INTERACTIVE PROTEIN1 (CSI1) were differentially affected by CESTRIN treatment, indicating different forms of association with the PM CSCs. KOR1 accumulated in bodies similar to CESA; however, POM2/CSI1 dissociated into the cytoplasm. In addition, MT stability was altered without direct inhibition of MT polymerization, suggesting a feedback mechanism caused by cellulose interference. The selectivity of CESTRIN was assessed using a variety of subcellular markers for which no morphological effect was observed. The association of CESAs with vesicles decorated by the trans-Golgi network-localized protein SYNTAXIN OF PLANTS61 (SYP61) was increased under CESTRIN treatment, implicating SYP61 compartments in CESA trafficking. The properties of CESTRIN compared with known CESA inhibitors afford unique avenues to study and understand the mechanism under which PM-associated CSCs are maintained and interact with MTs and to dissect their trafficking routes in etiolated hypocotyls.
Journal Article
A male-expressed rice embryogenic trigger redirected for asexual propagation through seeds
by
Skinner, Debra
,
Yang, Bing
,
Centre National de la Recherche Scientifique (CNRS)
in
13/1
,
13/31
,
14/35
2019
The molecular pathways that trigger the initiation of embryogenesis after fertilization in flowering plants, and prevent its occurrence without fertilization, are not well understood(1). Here we show in rice (Oryza sativa) that BABY BOOM1 (BBM1), a member of the AP2 family(2) of transcription factors that is expressed in sperm cells, has a key role in this process. Ectopic expression of BBM1 in the egg cell is sufficient for parthenogenesis, which indicates that a single wild-type gene can bypass the fertilization checkpoint in the female gamete. Zygotic expression of BBM1 is initially specific to the male allele but is subsequently biparental, and this is consistent with its observed auto-activation. Triple knockout of the genes BBM1, BBM2 and BBM3 causes embryo arrest and abortion, which are fully rescued by male-transmitted BBM1. These findings suggest that the requirement for fertilization in embryogenesis is mediated by male-genome transmission of pluripotency factors. When genome editing to substitute mitosis for meiosis (MiMe)(3,4) is combined with the expression of BBM1 in the egg cell, clonal progeny can be obtained that retain genome-wide parental heterozygosity. The synthetic asexual-propagation trait is heritable through multiple generations of clones. Hybrid crops provide increased yields that cannot be maintained by their progeny owing to genetic segregation. This work establishes the feasibility of asexual reproduction in crops, and could enable the maintenance of hybrids clonally through seed propagation(5,6).
Journal Article
The genetic basis of sex determination in grapes
by
Muyle, Aline
,
Garcia, Jadran
,
Department of Viticulture and Enology ; University of California [Davis] (UC Davis) ; University of California (UC)-University of California (UC)
in
45/22
,
45/23
,
45/77
2020
It remains a major challenge to identify the genes and mutations that lead to plant sexual differentiation. Here, we study the structure and evolution of the sex-determining region (SDR) in Vitis species. We report an improved, chromosome-scale Cabernet Sauvignon genome sequence and the phased assembly of nine wild and cultivated grape genomes. By resolving twenty Vitis SDR haplotypes, we compare male, female, and hermaphrodite haplotype structures and identify sex-linked regions. Coupled with gene expression data, we identify a candidate male-sterility mutation in the VviINP1 gene and potential female-sterility function associated with the transcription factor VviYABBY3 . Our data suggest that dioecy has been lost during domestication through a rare recombination event between male and female haplotypes. This work significantly advances the understanding of the genetic basis of sex determination in Vitis and provides the information necessary to rapidly identify sex types in grape breeding programs.
Journal Article
The Capsella rubella genome and the genomic consequences of rapid mating system evolution
by
Colby-Sawyer College ; Partenaires INRAE
,
Uppsala University
,
Chapman, Jarrod
in
631/208/212/2019
,
Advantages
,
Agriculture
2013
The shift from outcrossing to selfing is common in flowering plants, but the genomic consequences and the speed at which they emerge remain poorly understood. An excellent model for understanding the evolution of self fertilization is provided by Capsella rubella, which became self compatible <200,000 years ago. We report a C. rubella reference genome sequence and compare RNA expression and polymorphism patterns between C. rubella and its outcrossing progenitor Capsella grandiflora. We found a clear shift in the expression of genes associated with flowering phenotypes, similar to that seen in Arabidopsis, in which self fertilization evolved about 1 million years ago. Comparisons of the two Capsella species showed evidence of rapid genome-wide relaxation of purifying selection in C. rubella without a concomitant change in transposable element abundance. Overall we document that the transition to selfing may be typified by parallel shifts in gene expression, along with a measurable reduction of purifying selection.
Journal Article
Polyphenols in human nutrition: from the in vitro antioxidant capacity to the beneficial effects on cardiometabolic health and related inter-individual variability - an overview and perspective
by
Milenkovic, Dragan
,
Faculty of Medical Sciences
,
Maksimova, V
in
absorption
,
antioxidant activity
,
antioxidant enzymes
2020
Oxidative damage of cells and tissues is broadly implicated in human pathophysiology, including cardiometabolic diseases. Polyphenols, as important constituents of human diet and potent in vitro free radical scavengers, have been extensively studied for their beneficial effects on cardiometabolic health. However, it has been demonstrated that the in vivo antioxidant activity of polyphenols is distinct from their in vitro free radical scavenging capacity. Indeed, bioavailability of nutritional polyphenols is low, and conditioned by complex mechanisms of absorption, distribution, metabolism and excretion. Nowadays it is commonly accepted that the cellular antioxidant activity of polyphenols is mainly carried out via modification of transcription of genes involved in antioxidant defense. Importantly, polyphenols contribute to the cardiometabolic health also by modulation of plethora of cellular processes that are not directly associated with antioxidant enzymes, through nutri(epi)genomic mechanisms. Numerous human intervention studies have demonstrated beneficial effects of polyphenols on the key cardiometabolic risk factors. However, inconsistency of the results of some studies led to identification of the inter-individual variability in response to consumption of polyphenols. In perspective, a detailed investigation of the determinants of this inter-individual variability will potentially lead us towards personalized dietary recommendations. The phenomenon of inter-individual variability is also of relevance for supplementation with antioxidant (pro)vitamins.
Journal Article
Genomic analyses provide insights into the history of tomato breeding
by
Wang, Aoxue
,
Department of Plant Sciences [Univ California Davis] (Plant - UC Davis) ; University of California [Davis] (UC Davis) ; University of California (UC)-University of California (UC)
,
Zamir, Dani
in
45/23
,
631/208/514/1948
,
631/449/2491
2014
The histories of crop domestication and breeding are recorded in genomes. Although tomato is a model species for plant biology and breeding, the nature of human selection that altered its genome remains largely unknown. Here we report a comprehensive analysis of tomato evolution based on the genome sequences of 360 accessions. We provide evidence that domestication and improvement focused on two independent sets of quantitative trait loci (QTLs), resulting in modern tomato fruit similar to 100 times larger than its ancestor. Furthermore, we discovered a major genomic signature for modern processing tomatoes, identified the causative variants that confer pink fruit color and precisely visualized the linkage drag associated with wild introgressions. This study outlines the accomplishments as well as the costs of historical selection and provides molecular insights toward further improvement.
Journal Article
Genetic diversity analysis of cultivated and wild grapevine (Vitis vinifera L.) accessions around the Mediterranean basin and Central Asia
2018
Background
The mountainous region between the Caucasus and China is considered to be the center of domestication for grapevine. Despite the importance of Central Asia in the history of grape growing, information about the extent and distribution of grape genetic variation in this region is limited in comparison to wild and cultivated grapevines from around the Mediterranean basin. The principal goal of this work was to survey the genetic diversity and relationships among wild and cultivated grape germplasm from the Caucasus, Central Asia, and the Mediterranean basin collectively to understand gene flow, possible domestication events and adaptive introgression.
Results
A total of 1378 wild and cultivated grapevines collected around the Mediterranean basin and from Central Asia were tested with a set of 20 nuclear SSR markers. Genetic data were analyzed (Cluster analysis, Principal Coordinate Analysis and STRUCTURE) to identify groups, and the results were validated by Nei’s genetic distance, pairwise F
ST
analysis and assignment tests. All of these analyses identified three genetic groups: G1, wild accessions from Croatia, France, Italy and Spain; G2, wild accessions from Armenia, Azerbaijan and Georgia; and G3, cultivars from Spain, France, Italy, Georgia, Iran, Pakistan and Turkmenistan, which included a small group of wild accessions from Georgia and Croatia. Wild accessions from Georgia clustered with cultivated grape from the same area (
proles pontica
), but also with Western Europe (
proles occidentalis
), supporting Georgia as the ancient center of grapevine domestication. In addition, cluster analysis indicated that Western European wild grapes grouped with cultivated grapes from the same area, suggesting that the cultivated
proles occidentalis
contributed more to the early development of wine grapes than the wild vines from Eastern Europe.
Conclusions
The analysis of genetic relationships among the tested genotypes provided evidence of genetic relationships between wild and cultivated accessions in the Mediterranean basin and Central Asia. The genetic structure indicated a considerable amount of gene flow, which limited the differentiation between the two subspecies. The results also indicated that grapes with mixed ancestry occur in the regions where wild grapevines were domesticated.
Journal Article
Prevalence and risk factors associated with Campylobacter spp. and Salmonella enterica in livestock raised on diversified small-scale farms in California
by
Kukielka, Esther
,
Department of Population Health and Reproduction, School of Veterinary Medicine ; University of California (UC)
,
Jay-Russell, Michèle
in
Agriculture
,
Animal products
,
Animal species
2019
Diversified farms are operations that raise a variety of crops and/or multiple species of livestock, with the goal of utilising the products of one for the growth of the other, thus fostering a sustainable cycle. This type of farming reflects consumers' increasing demand for sustainably produced, naturally raised or pasture-raised animal products that are commonly produced on diversified farms. The specific objectives of this study were to characterise diversified small-scale farms (DSSF) in California, estimate the prevalence of Salmonella enterica and Campylobacter spp. in livestock and poultry, and evaluate the association between farm- and sample-level risk factors and the prevalence of Campylobacter spp. on DSSF in California using a multilevel logistic model. Most participating farms were organic and raised more than one animal species. Overall Salmonella prevalence was 1.19% (95% confidence interval (CI95) 0.6–2), and overall Campylobacter spp. prevalence was 10.8% (CI95 = 9–12.9). Significant risk factors associated with Campylobacter spp. were farm size (odds ratio (OR)10–50 acres: less than 10 acres = 6, CI95 = 2.11–29.8), ownership of swine (OR = 9.3, CI95 = 3.4–38.8) and season (ORSpring: Coastal summer = 3.5, CI95 = 1.1–10.9; ORWinter: Coastal summer = 3.23, CI95 = 1.4–7.4). As the number of DSSF continues to grow, evaluating risk factors and management practices that are unique to these operations will help identify risk mitigation strategies and develop outreach materials to improve the food safety of animal and vegetable products produced on DSSF.
Journal Article
Precipitation drives global variation in natural selection
by
Department of Integrative Biology [Berkeley] (IB) ; University of California [Berkeley] (UC Berkeley) ; University of California (UC)-University of California (UC)
,
Siepielski, Adam M
,
Sheldon, Ben C
in
Adaptation, Physiological - genetics
,
Alterations
,
Animal populations
2017
Climate change has the potential to affect the ecology and evolution of every species on Earth. Although the ecological consequences of climate change are increasingly well documented, the effects of climate on the key evolutionary process driving adaptation—natural selection—are largely unknown.We report that aspects of precipitation and potential evapotranspiration, along with the North Atlantic Oscillation, predicted variation in selection across plant and animal populations throughout many terrestrial biomes, whereas temperature explained little variation. By showing that selection was influenced by climate variation, our results indicate that climate change may cause widespread alterations in selection regimes, potentially shifting evolutionary trajectories at a global scale
Journal Article