Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
12 result(s) for "University of Pecs"
Sort by:
The recovery of European freshwater biodiversity has come to a halt
Owing to a long history of anthropogenic pressures, freshwater ecosystems are among the most vulnerable to biodiversity loss. Mitigation measures, including wastewater treatment and hydromorphological restoration, have aimed to improve environmental quality and foster the recovery of freshwater biodiversity. Here, using 1,816 time series of freshwater invertebrate communities collected across 22 European countries between 1968 and 2020, we quantified temporal trends in taxonomic and functional diversity and their responses to environmental pressures and gradients. We observed overall increases in taxon richness (0.73% per year), functional richness (2.4% per year) and abundance (1.17% per year). However, these increases primarily occurred before the 2010s, and have since plateaued. Freshwater communities downstream of dams, urban areas and cropland were less likely to experience recovery. Communities at sites with faster rates of warming had fewer gains in taxon richness, functional richness and abundance. Although biodiversity gains in the 1990s and 2000s probably reflect the effectiveness of water-quality improvements and restoration projects, the decelerating trajectory in the 2010s suggests that the current measures offer diminishing returns. Given new and persistent pressures on freshwater ecosystems, including emerging pollutants, climate change and the spread of invasive species, we call for additional mitigation to revive the recovery of freshwater biodiversity.
3-Hydroxy-3-Methylglutaryl Coenzyme A Reductase1 Interacts with NORK and Is Crucial for Nodulation in Medicago truncatula
NORK in legumes encodes a receptor-like kinase that is required for Nod factor signaling and root nodule development. Using Medicago truncatula NORK as bait in a yeast two-hybrid assay, we identified 3-hydroxy-3-methylglutaryl CoA reductase 1 (Mt HMGR1) as a NORK interacting partner. HMGR1 belongs to a multigene family in M. truncatula, and different HMGR isoforms are key enzymes in the mevalonate biosynthetic pathway leading to the production of a diverse array of isoprenoid compounds. Testing other HMGR members revealed a specific interaction between NORK and HMGR1. Mutagenesis and deletion analysis showed that this interaction requires the cytosolic active kinase domain of NORK and the cytosolic catalytic domain of HMGR1. NORK homologs from Lotus japonicus and Sesbania rostrata also interacted with Mt HMGR1, but homologous nonsymbiotic kinases of M. truncatula did not. Pharmacological inhibition of HMGR activities decreased nodule number and delayed nodulation, supporting the importance of the mevalonate pathway in symbiotic development. Decreasing HMGR1 expression in M. truncatula transgenic roots by RNA interference led to a dramatic decrease in nodulation, confirming that HMGR1 is essential for nodule development. Recruitment of HMGR1 by NORK could be required for production of specific isoprenoid compounds, such as cytokinins, phytosteroids, or isoprenoid moieties involved in modification of signaling proteins.
English historical linguistics 2010 : selected papers from the sixteenth International Conference on English Historical Linguistics (ICEHL 16), Pécs, 23-27 August 2010
The use of linguistic forms derived from the lexicon denoting sacred entities is often subject to tabooing behaviour. In the 15th and 16th century phrases like by gogges swete body or by cockes bones allowed speakers to address God without really saying the name; cf. Hock (1991: 295). The religious interjections based on the phonetically corrupt gog and cock are evidenced to have gained currency in the 16th century. In the 17th century all interjections based on religious appellations ceased to appear on stage in accordance with the regulations of the Act to Restrain Abuses of Players and never returned to stage. While, with the loosening grip of censorship, God and Gad interjections are abundant in the drama texts of the 18th and 19th centuries. The present article attempts to explain the reasons for the disappearance of gog and cock interjections in the course of the 17th century. Additionally, the article contains remarks on the socio-pragmatics of gog and cock and their phraseological productivity.
Projections of streamflow intermittence under climate change in European drying river networks
Climate and land use changes, as well as human water use and flow alteration, are causing worldwide shifts in river flow dynamics. During the last decades, low flows, flow intermittence, and drying have increased in many regions of the world, including Europe. This trend is projected to continue and amplify in the future, resulting in more frequent and intense hydrological droughts. However, due to a lack of data and studies on temporary rivers in the past, little is known about the processes governing the development of flow intermittence and drying, their timing and frequency, or their long-term evolution under climate change. Moreover, understanding the impact of climate change on the drying up of rivers is crucial to assess the impact of climate change on aquatic ecosystems, including the biodiversity and functional integrity of freshwater systems. This study is one of the first to present future projections of drying in intermittent river networks and to analyse future changes in the drying patterns at a high spatial and temporal resolution. Flow intermittence projections were produced using a hybrid hydrological model forced with climate projection data from 1985 until 2100 under three climate scenarios in six European drying river networks. The studied watershed areas are situated in different biogeographic regions, located in Spain, France, Croatia, Hungary, Czechia, and Finland, and their areas range from 150 to 350 km2. Additionally, flow intermittence indicators were developed and calculated to assess (1) changes in the characteristics of the drying spells at the reach scale and (2) changes in the spatial extent of drying in the river network at various time intervals. The results for all three climate scenarios show that drying patterns are projected to increase and expand in time and space, despite differences in the amplitude of changes. Temporally, in addition to the average frequency of drying events, the duration increases over the year. Seasonal changes are expected to result in an earlier onset and longer persistence of drying throughout the year. Summer drying maxima are likely to shift to earlier in the spring, with extended drying periods or additional maxima occurring in autumn and extending into the winter season in some regions. A trend analysis of extreme events shows that the extreme dry spells observed in recent years could become regular by the end of the century. Additionally, we observe transitions from perennial to intermittent reaches in the future.
Evaluation of two invasive plant invaders in Europe (Solidago canadensis and Solidago gigantea) as possible sources of botanical insecticides
Solidago gigantea and Solidago canadensis (Asteraceae) are two invasive weeds native to North America and introduced in Europe and Asia, where they are spreading quickly threatening the stability of local secondary ecosystems. These two plant invaders may represent an ideal bioresource to be exploited for production of green pesticides. Therefore, herein we evaluated the efficacy of the essential oils (EOs) obtained from their different parts, i.e. leaves, inflorescences and roots, against Culex quinquefasciatus , Spodoptera littoralis and Musca domestica . The essential oil composition was investigated by gas chromatographic–mass spectrometry (GC–MS) analysis. S. canadensis leaf EO was the most toxic to C. quinquefasciatus , with a LC 50 of 89.3 μl L −1 . The two most effective oils against M. domestica adults were S. canadensis leaf and flower EOs, with LD 50 values of 206.9 and 207.1 μg adult −1 , respectively. Three EOs highly toxic to S. littoralis were also identified, namely S. gigantea leaf EO, S. canadensis leaf EO and S. gigantea flower EO, with LD 50 values of 84.5, 98.9 and 107.4 μg larva −1 , respectively. Since the S. canadensis leaf EO was the only green product effective against all the tested insect pests, we selected it for non-target toxicity assays on Eisenia fetida earthworms, along with the leaf EO from S. gigantea . Both the S. canadensis and S. gigantea leaf EOs did not led to mortality of E. fetida adult earthworms, at variance with the positive control α -cypermethrin, allowing us to propose them for pest control purposes in IPM and organic farming.
Selective sweep at the Rpv3 locus during grapevine breeding for downy mildew resistance
The Rpv3 locus is a major determinant of downy mildew resistance in grapevine (Vitis spp.). A selective sweep at this locus was revealed by the DNA genotyping of 580 grapevines, which include a highly diverse set of 265 European varieties that predated the spread of North American mildews, 82 accessions of wild species, and 233 registered breeding lines with North American ancestry produced in the past 150 years. Artificial hybridisation and subsequent phenotypic selection favoured a few Rpv3 haplotypes that were introgressed from wild vines and retained in released varieties. Seven conserved haplotypes in five descent groups of resistant varieties were traced back to their founders: (1) 'Munson', a cross between two of Hermann Jaeger's selections of V. rupestris and V. lincecumii made in the early 1880s in Missouri, (2) V. rupestris 'Ganzin', first utilised for breeding in 1879 by Victor Ganzin in France, (3) 'Noah', selected in 1869 from intermingled accessions of V. riparia and V. labrusca by Otto Wasserzieher in Illinois, (4) 'Bayard', a V. rupestris x V. labrusca offspring generated in 1882 by George Couderc in France, and (5) a wild form closely related to V. rupestris accessions in the Midwestern United States and introgressed into 'Seibel 4614' in the 1880s by Albert Seibel in France. Persistence of these Rpv3 haplotypes across many of the varieties generated by human intervention indicates that a handful of vines with prominent resistance have laid the foundation for modern grape breeding. A rampant hot spot of NB-LRR genes at the Rpv3 locus has provided a distinctive advantage for the adaptation of native North American grapevines to withstand downy mildew. The coexistence of multiple resistance alleles or paralogues in the same chromosomal region but in different haplotypes counteracts efforts to pyramidise them in a diploid individual via conventional breeding.
Science and Management of Intermittent Rivers and Ephemeral Streams (SMIRES)
More than half of the global river network is composed of intermittent rivers and ephemeral streams (IRES), which are expanding in response to climate change and increasing water demands. After years of obscurity, the science of IRES has bloomed recently and it is being recognised that IRES support a unique and high biodiversity, provide essential ecosystem services and are functionally part of river networks and groundwater systems. However, they still lack protective and adequate management, thereby jeopardizing water resources at the global scale. This Action brings together hydrologists, biogeochemists, ecologists, modellers, environmental economists, social researchers and stakeholders from 14 different countries to develop a research network for synthesising the fragmented, recent knowledge on IRES, improving our understanding of IRES and translating this into a science-based, sustainable management of river networks. Deliverables will be provided through i) research workshops synthesising and addressing key challenges in IRES science, supporting research exchange and educating young researchers, and ii) researcher-stakeholder workshops translating improved knowledge into tangible tools and guidelines for protecting IRES and raising awareness of their importance and value in societal and decision-maker spheres. This Action is organized within six Working Groups to address: (i) the occurrence, distribution and hydrological trends of IRES; (ii) the effects of flow alterations on IRES functions and services; (iii) the interaction of aquatic and terrestrial biogeochemical processes at catchment scale; (iv) the biomonitoring of the ecological status of IRES; (v) synergies in IRES research at the European scale, data assemblage and sharing; (vi) IRES management and advocacy training.
Periaqueductal gray and emotions: the complexity of the problem and the light at the end of the tunnel, the magnetic resonance imaging
The periaqueductal gray (PAG) is less referred in relationship with emotions than other parts of the brain (e.g. cortex, thalamus, amygdala), most probably because of the difficulty to reach and manipulate this small and deeply lying structure. After defining how to evaluate emotions, we have reviewed the literature and summarized data of the PAG contribution to the feeling of emotions focusing on the behavioral and neurochemical considerations. In humans, emotions can be characterized by three main domains: the physiological changes, the communicative expressions, and the subjective experiences. In animals, the physiological changes can mainly be studied. Indeed, early studies have considered the PAG as an important center of the emotions-related autonomic and motoric processes. However, in vivo imaging have changed our view by highlighting the PAG as a significant player in emotions-related cognitive processes. The PAG lies on the crossroad of networks important in the regulation of emotions and therefore it should not be neglected. In vivo imaging represents a good tool for studying this structure in living organism and may reveal new information about its role beyond its importance in the neurovegetative regulation.
Neglected dipterans in stream studies
True flies comprise approximately one-tenth of all animal species on Earth, yet despite their prevalence and ecological significance in freshwater ecosystems, members of the insect order Diptera are frequently neglected in stream studies. This absence or inconsistency regarding Diptera in literature and taxonomic lists may leave readers with a sense of discrepancy. To illustrate this underrepresentation in quantitative ecological investigations, we conducted a targeted literature-based meta-analysis, assessing the average level of Diptera identification and the reported number of families. These findings were compared to data from 639 quantitative samples collected across six European ecoregions (Mediterranean, Alpine, Continental, Balkanic, Pannonian, Boreal) during six, bimonthly repeated sampling campaigns in 2021 and 2022. Our analysis revealed that, compared to other macroinvertebrate groups, Diptera were typically identified at a less detailed level, often only to the family level, thereby failing to fully represent Diptera diversity, especially regarding rare, less abundant families. In our review of literature studies, we identified references to a total of 40 families. Notably, Chironomidae, Ceratopogonidae, and Simuliidae were consistently represented across the majority of studies, whereas nearly half of the families were exclusively mentioned in one or two studies. No significant differences were found in the number of families across continents or various habitat types. In our case studies the number of families was significantly higher than in European stream studies, suggesting that several rare families occasionally completely neglected during sampling, sample sorting or identification. We explored potential connections among Diptera assemblages through correlation and coexistence analyses. Our results highlighted the significant influence of the more frequent Chironomidae, Ceratopogonidae, and Simuliidae on the presence or absence of other families. While correlations between Diptera families were identified, attempts to develop a predictive model for the diversity and occurrence of minor families based on the abundance of major ones proved inconclusive. For future quantitative studies on macroinvertebrate communities, it is essential to recognize, identify and incorporate less abundant Diptera families, even on family level, or in higher taxonomic resolution, if possible,  to enhance understanding and prevent the loss of information concerning this compositionally and functionally uniquely diverse insect group, which represent a significant part of the entire community, and gain a better understanding on their interactions with other aquatic groups.
Antifungal Activity of Fused Mannich Ketones Triggers an Oxidative Stress Response and Is Cap1-Dependent in Candida albicans
We investigated the antifungal activity of fused Mannich ketone (FMK) congeners and two of their aminoalcohol derivatives. In particular, FMKs with five-membered saturated rings were shown to have minimum inhibitory concentration (MIC90s) ranging from 0.8 to 6 µg/mL toward C. albicans and the closely related C. parapsilosis and C. krusei while having reduced efficacy toward C. glabrata and almost no efficacy against Aspergillus sp. Transcript profiling of C. albicans cells exposed for 30 or 60 min to 2-(morpholinomethyl)-1-indanone, a representative FMK with a five-membered saturated ring, revealed a transcriptional response typical of oxidative stress and similar to that of a C. albicans Cap1 transcriptional activator. Consistently, C. albicans lacking the CAP1 gene was hypersensitive to this FMK, while C. albicans strains overexpressing CAP1 had decreased sensitivity to 2-(morpholinomethyl)-1-indanone. Quantitative structure-activity relationship studies revealed a correlation of antifungal potency and the energy of the lowest unoccupied molecular orbital of FMKs and unsaturated Mannich ketones thereby implicating redox cycling-mediated oxidative stress as a mechanism of action. This conclusion was further supported by the loss of antifungal activity upon conversion of representative FMKs to aminoalcohols that were unable to participate in redox cycles.