Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
9 result(s) for "Unsinger, Jacqueline"
Sort by:
Intravenously administered interleukin-7 to reverse lymphopenia in patients with septic shock: a double-blind, randomized, placebo-controlled trial
BackgroundProfound lymphopenia is an independent predictor of adverse clinical outcomes in sepsis. Interleukin-7 (IL-7) is essential for lymphocyte proliferation and survival. A previous phase II study showed that CYT107, a glycosylated recombinant human IL-7, administered intramuscularly reversed sepsis-induced lymphopenia and improved lymphocyte function. Thepresent study evaluated intravenous administration of CYT107. This prospective, double-blinded, placebo-controlled trial was designed to enroll 40 sepsis patients, randomized 3:1 to CYT107 (10 µg/kg) or placebo, for up to 90 days.ResultsTwenty-one patients were enrolled (fifteen CYT107 group, six placebo group) at eight French and two US sites. The study was halted early because three of fifteen patients receiving intravenous CYT107 developed fever and respiratory distress approximately 5–8 h after drug administration. Intravenous administration of CYT107 resulted in a two–threefold increase in absolute lymphocyte counts (including in both CD4+ and CD8+ T cells (all p < 0.05)) compared to placebo. This increase was similar to that seen with intramuscular administration of CYT107, was maintained throughout follow-up, reversed severe lymphopenia and was associated with increase in organ support free days (OSFD). However, intravenous CYT107 produced an approximately 100-fold increase in CYT107 blood concentration compared with intramuscular CYT107. No cytokine storm and no formation of antibodies to CYT107 were observed.ConclusionIntravenous CYT107 reversed sepsis-induced lymphopenia. However, compared to intramuscular CYT107 administration, it was associated with transient respiratory distress without long-term sequelae. Because of equivalent positive laboratory and clinical responses, more favorable pharmacokinetics, and better patient tolerability, intramuscular administration of CYT107 is preferable.Trial registration: Clinicaltrials.gov, NCT03821038. Registered 29 January 2019, https://clinicaltrials.gov/ct2/show/NCT03821038?term=NCT03821038&draw=2&rank=1.
Regulatory T cells require peripheral CCL2-CCR2 signaling to facilitate the resolution of medication overuse headache-related behavioral sensitization
Background Medication overuse headache (MOH) is the most common secondary headache disorder, resulting from chronic and excessive use of medication to treat headaches, for example, sumatriptan. In a recent study, we have shown that the peripheral C-C motif ligand 2 (CCL2), C-C motif chemokine receptor 2 (CCR2) and calcitonin-gene-related peptide (CGRP) signaling pathways interact with each other and play critical roles in the development of chronic migraine-related behavioral and cellular sensitization. In the present study, we investigated whether CCL2-CCR2 and CGRP signaling pathways play a role in the development of sumatriptan overuse-induced sensitization, and whether they are involved in its resolution by the low-dose interleukin-2 (LD-IL-2) treatment. Methods Mice received daily sumatriptan administration for 12 days. MOH-related behavioral sensitization was assessed by measuring changes of periorbital mechanical thresholds for 3 weeks. CCL2-CCR2 and CGRP signaling pathways were inhibited by targeted gene deletion or with an anti-CCL2 antibody. Ca 2+ -imaging was used to examine whether repetitive sumatriptan treatment enhances CGRP and pituitary adenylate cyclase–activating polypeptide (PACAP) signaling in trigeminal ganglion (TG) neurons. LD-IL-2 treatment was initiated after the establishment of sumatriptan-induced sensitization. Immunohistochemistry and flow cytometry analyses were used to examine whether CCL2-CCR2 signaling controls regulatory T (Treg) cell proliferation and/or trafficking. Results CCL2, CCR2 and CGRPα global KO mice exhibited robust sumatriptan-induced behavioral sensitization comparable to wild-type controls. Antibody neutralization of peripheral CCL2 did not affect sumatriptan-induced behaviors either. Repeated sumatriptan administration did not enhance the strength of CGRP or PACAP signaling in TG neurons. Nevertheless, LD-IL-2 treatment, which facilitated the resolution of sumatriptan-induced sensitization in wild-type and CGRPα KO mice, was completely ineffective in mice with compromised CCL2-CCR2 signaling. In CCL2 KO mice, we observed normal LD-IL-2-induced Treg expansion in peripheral blood, but the increase of Treg cells in dura and TG tissues was significantly reduced in LD-IL-2-treated CCL2 KO mice relative to wild-type controls. Conclusions These results indicate that the endogenous CCL2-CCR2 and CGRP signaling pathways are not involved in sumatriptan-induced behavioral sensitization, suggesting that distinct molecular mechanisms underlie chronic migraine and MOH. On the other hand, peripheral CCL2-CCR2 signaling is required for LD-IL-2 to reverse chronic headache-related sensitization. Graphical abstract
Severe immunosuppression and not a cytokine storm characterizes COVID-19 infections
COVID-19-associated morbidity and mortality have been attributed to a pathologic host response. Two divergent hypotheses have been proposed: hyperinflammatory cytokine storm; and failure of host protective immunity that results in unrestrained viral dissemination and organ injury. A key explanation for the inability to address this controversy has been the lack of diagnostic tools to evaluate immune function in COVID-19 infections. ELISpot, a highly sensitive, functional immunoassay, was employed in 27 patients with COVID-19, 51 patients with sepsis, 18 critically ill nonseptic (CINS) patients, and 27 healthy control volunteers to evaluate adaptive and innate immune status by quantitating T cell IFN-ɣ and monocyte TFN-α production. Circulating T cell subsets were profoundly reduced in COVID-19 patients. Additionally, stimulated blood mononuclear cells produced less than 40%-50% of the IFN-ɣ and TNF-α observed in septic and CINS patients, consistent with markedly impaired immune effector cell function. Approximately 25% of COVID-19 patients had increased IL-6 levels that were not associated with elevations in other canonical proinflammatory cytokines. Collectively, these findings support the hypothesis that COVID-19 suppresses host functional adaptive and innate immunity. Importantly, IL-7 administered ex vivo restored T cell IFN-ɣ production in COVID-19 patients. Thus, ELISpot may functionally characterize host immunity in COVID-19 and inform prospective therapies.
Interleukin-7 Ameliorates Immune Dysfunction and Improves Survival in a 2-Hit Model of Fungal Sepsis
Background. Secondary hospital-acquired fungal infections are common in critically-ill patients and mortality remains high despite antimicrobial therapy. Interleukin-7 (IL-7) is a potent immunotherapeutic agent that improves host immunity and has shown efficacy in bacterial and viral models of infection. This study examined the ability of IL-7, which is currently in multiple clinical trials (including hepatitis and human immunodeficiency virus), to improve survival in a clinically relevant 2-hit model of fungal sepsis. Methods. Mice underwent cecal ligation and puncture to induce peritonitis. Four days later, surviving mice had intravenous injection with Candida albicans. Following Candida infection, mice were treated with IL-7 or saline control. The effect of IL-7 on host immunity and survival was recorded. Results. IL-7 ameliorated the loss of immune effector cells and increased lymphocyte functions, including activation, proliferation, expression of adhesion molecules, and interferon-γ production. These beneficial effects of IL-7 were associated with an increase in global immunity as reflected by an enhanced delayed type hypersensitivity response and a 1.7-fold improvement in survival. Conclusions. The present findings showing that IL-7 improves survival in fungal sepsis, together with its previously reported efficacy in bacterial and viral infectious models, further supports its use as a novel immunotherapeutic in sepsis.
Severe immunosuppression and not a cytokine storm characterizes COVID-19 infections
COVID-19–associated morbidity and mortality have been attributed to a pathologic host response. Two divergent hypotheses have been proposed: hyperinflammatory cytokine storm; and failure of host protective immunity that results in unrestrained viral dissemination and organ injury. A key explanation for the inability to address this controversy has been the lack of diagnostic tools to evaluate immune function in COVID-19 infections. ELISpot, a highly sensitive, functional immunoassay, was employed in 27 patients with COVID-19, 51 patients with sepsis, 18 critically ill nonseptic (CINS) patients, and 27 healthy control volunteers to evaluate adaptive and innate immune status by quantitating T cell IFN-ɣ and monocyte TFN-α production. Circulating T cell subsets were profoundly reduced in COVID-19 patients. Additionally, stimulated blood mononuclear cells produced less than 40%–50% of the IFN-ɣ and TNF-α observed in septic and CINS patients, consistent with markedly impaired immune effector cell function. Approximately 25% of COVID-19 patients had increased IL-6 levels that were not associated with elevations in other canonical proinflammatory cytokines. Collectively, these findings support the hypothesis that COVID-19 suppresses host functional adaptive and innate immunity. Importantly, IL-7 administered ex vivo restored T cell IFN-ɣ production in COVID-19 patients. Thus, ELISpot may functionally characterize host immunity in COVID-19 and inform prospective therapies.
Retroviral Vectors for the Transduction of Autoregulated, Bidirectional Expression Cassettes
Regulated transgene expression is increasingly used in research but is also needed for certain therapies. Regulatory systems are usually composed of two expression units, one bearing the gene of interest under control of a regulatable promoter and the other, a constitutively expressed transactivator that modulates the activity of the regulatable promoter. Because the cotransfer of two independent elements is not efficient in primary cells, single transduction step vectors conferring regulatable gene expression cassettes would be helpful. We have developed retroviral vectors containing an autoregulatory bidirectional expression cassette that encodes all components necessary for regulated expression of a gene of interest. The influence of the orientation of the reporter gene with respect to the viral long terminal repeat (LTR) and the effect of transcriptionally inactive LTRs were investigated using mouse leukemia virus (MLV) and self-inactivating (SIN)-based retroviral vectors. Strict regulation was observed when the reporter was inserted in antisense orientation with respect to the LTR, whereas a sense arrangement of the reporter resulted in a loss of regulation capacity. Expression and regulation of the antisense-orientated reporter gene were homogenous in infected cell pools and investigated cell clones. Long-term observations of infected cells over a period of 30 passages revealed stable expression and regulation. These autoregulated, bidirectional retroviral vectors combine the advantages of single-step transduction with strict regulation of the gene of interest in the infected target cells.
Temporal Changes in Innate and Adaptive Immunity During Sepsis as Determined by ELISpot
The inability to evaluate host immunity in a rapid quantitative manner in patients with sepsis has severely hampered development of novel immune therapies. The ELISpot assay is a bioassay that measures the number of cytokine-secreting cells and the relative amount of cytokine produced at the single-cell level. A key advantage of ELISpot is its excellent dynamic range enabling a more precise quantifiable assessment of host immunity. Herein, we tested the hypothesis on whether the ELISpot assay can detect dynamic changes in both innate and adaptive immunity as they often occur during sepsis. We also tested whether ELISpot could detect the effect of immune drug therapies to modulate innate and adaptive immunity. Mice were made septic using sublethal cecal ligation and puncture (CLP). Blood and spleens were harvested serially and IFN-γ and TNF-α production were compared by ELISpot and ELISA. The capability of ELISpot to detect changes in innate and adaptive immunity due to immune therapy with dexamethasone, IL-7, and arginine was also evaluated. ELISpot confirmed a decreased innate and adaptive immunity responsiveness during sepsis progression. More importantly, ELISpot was also able to detect changes in adaptive and innate immunity in response to immune-modulatory reagents, for example dexamethasone, arginine, and IL-7 in a readily quantifiable manner, as predicted by the reagents known mechanisms of action. ELISpot and ELISA results tended to parallel one another although some differences were noted. ELISpot offers a unique capability to assess the functional status of both adaptive and innate immunity over time. The results presented herein demonstrate that ELISpot can also be used to detect and follow the effects of drugs to ameliorate sepsis-induced immune dysfunction. This capability would be a major advance in guiding new immune therapies in sepsis.
Polyvalent DNA vaccines with bidirectional promoters
The hepatitis B surface antigen (HBsAg) and core antigen (HBcAg) were coexpressed from a synthetic bidirectional promoter with the tetracycline-inactivated transactivator (tTA). The function of this autoregulative system was evaluated following either transfer into established cell lines or intramuscular and intradermal injection of high or low doses of DNA into mice. We measured in vitro antigen expression and in vivo the induction of specific humoral and cellular immune responses. Successful regulation of antigen expression was observed in cultured cells. DNA vaccination with these constructs efficiently primed hepatitis B virus (HBV) specific immunity. However, immunogenic concentrations of the antigens were expressed even in the absence of the transactivator, indicating that low expression level is sufficient to prime an immune response. The bidirectional promoter allows coexpression of either both HBV antigens or a HBV antigen and enhanced green fluorescent protein leading to efficient priming of stable immunity against both antigens. This study demonstrates the potential of synthetic polyvalent plasmids in DNA vaccination.