Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
1,361 result(s) for "Urbán, Péter"
Sort by:
Genomic Characterization and Molecular Epidemiology of Tusaviruses and Related Novel Protoparvoviruses (Family Parvoviridae) from Ruminant Species (Bovine, Ovine and Caprine) in Hungary
Tusavirus 1 of species Protoparvovirus incertum 1 (family Parvoviridae) was first identified in humans and later in small ruminants (caprine and ovine). This study reports the full-length coding sequences (~4400–4600 nt) of three novel tusavirus-related protoparvoviruses from ovine (“misavirus”, PV540792), for the first time bovine (“sisavirus”, PV540793) and subsequently from caprine (“gisavirus” PV540850/51) fecal samples, using next-generation sequencing (NGS) and PCR techniques. Their NS1, VP1 and VP2 proteins shared 61–63% amino acid identities with each other and with tusaviruses, suggesting these three viruses belong to three novel species in the genus Protoparvovirus. Phylogenetic analyses placed them with tusaviruses on a separate main branch, implying a shared origin among these most likely ruminant protoparvoviruses. A small-scale epidemiological investigation on 318 ruminant enteric samples using novel generic NS1 primers found misavirus in 14/51 (27.5%) ovine and sisavirus in 19/203 (9.4%) bovine samples from multiple Hungarian farms. Tusavirus was present in 5/51 (9.8%) ovine and 15/62 (24.2%) caprine samples, all from one farm. The highest prevalences for all three viruses were found in animals aged 2–12 months, though sporadic cases were also found in other age groups. Partial NS and VP sequence-based phylogenetic trees showed virus-specific lineages for misa-, sisa-, gisa- and tusaviruses, with various strains forming sub-lineages. These findings suggest the presence of multiple genotypes and/or members of additional species, which was supported by a VP sequence-based hierarchical cluster analysis. The study’s viruses were mostly phylogenetically separated by host; however, two bovine sisavirus strains with diverse phylogenetic localizations in the NS (belonging to bovine sisaviruses) and VP1 trees (distantly related to ovine misaviruses) could indicate previous (interspecies?) recombination events.
Identification of disease- and headache-specific mediators and pathways in migraine using blood transcriptomic and metabolomic analysis
BackgroundRecent data suggest that gene expression profiles of peripheral white blood cells can reflect changes in the brain. We aimed to analyze the transcriptome of peripheral blood mononuclear cells (PBMC) and changes of plasma metabolite levels of migraineurs in a self-controlled manner during and between attacks.MethodsTwenty-four patients with migraine were recruited and blood samples were collected in a headache-free (interictal) period and during headache (ictal) to investigate disease- and headache-specific alterations. Control samples were collected from 13 age- and sex-matched healthy volunteers. RNA was isolated from PBMCs and single-end 75 bp RNA sequencing was performed using Illumina NextSeq 550 instrument followed by gene-level differential expression analysis. Functional analysis was carried out on information related to the role of genes, such as signaling pathways and biological processes. Plasma metabolomic measurement was performed with the Biocrates MxP Quant 500 Kit.ResultsWe identified 144 differentially-expressed genes in PBMCs between headache and headache-free samples and 163 between symptom-free patients and controls. Network analysis revealed that enriched pathways included inflammation, cytokine activity and mitochondrial dysfunction in both headache and headache-free samples compared to controls. Plasma lactate, succinate and methionine sulfoxide levels were higher in migraineurs while spermine, spermidine and aconitate were decreased during attacks.ConclusionsIt is concluded that enhanced inflammatory and immune cell activity, and oxidative stress can play a role in migraine susceptibility and headache generation.
Comprehensive Genomic Profiling of Small-Cell Lung Cancer Reveals Frequent Potentially Targetable Alterations
Small-cell lung carcinoma (SCLC) remains one of the most aggressive lung cancers and continues to pose a major challenge for precision oncology. Despite its morphological uniformity, SCLC exhibits marked molecular heterogeneity with recurrent, potentially targetable genomic alterations. Comprehensive profiling is often hindered by limited tissue availability and the need for rapid therapeutic intervention. We performed genomic profiling of 55 primary and metastatic SCLC samples using a 324-gene hybrid-capture next-generation sequencing panel. Consistent with prior reports, nearly all tumors exhibited biallelic TP53 and RB1 inactivation. Recurrent alterations involved the PI3K/Akt/mTOR pathway (62%), chromatin regulators (42%), and NOTCH signaling genes (15%). PTEN mutations were enriched in brain metastases. Frequent copy-number gains affected SOX2, NKX2-1, MYC-family genes, and CCNE1. Two novel recurrent amplifications of potential clinical significance were identified: TYRO3 (33%) and SDHA (13%). TYRO3, a TAM family receptor tyrosine kinase, and SDHA, a mitochondrial enzyme involved in succinate metabolism, may contribute to tumor progression and represent emerging therapeutic vulnerabilities. These findings underscore the genomic diversity of SCLC and highlight the potential utility of broad next-generation sequencing in uncovering new molecular targets for precision therapy.
Disease- and headache-specific microRNA signatures and their predicted mRNA targets in peripheral blood mononuclear cells in migraineurs: role of inflammatory signalling and oxidative stress
BackgroundMigraine is a primary headache with genetic susceptibility, but the pathophysiological mechanisms are poorly understood, and it remains an unmet medical need. Earlier we demonstrated significant differences in the transcriptome of migraineurs' PBMCs (peripheral blood mononuclear cells), suggesting the role of neuroinflammation and mitochondrial dysfunctions. Post-transcriptional gene expression is regulated by miRNA (microRNA), a group of short non-coding RNAs that are emerging biomarkers, drug targets, or drugs. MiRNAs are emerging biomarkers and therapeutics; however, little is known about the miRNA transcriptome in migraine, and a systematic comparative analysis has not been performed so far in migraine patients.MethodsWe determined miRNA expression of migraineurs’ PBMC during (ictal) and between (interictal) headaches compared to age- and sex-matched healthy volunteers. Small RNA sequencing was performed from the PBMC, and mRNA targets of miRNAs were predicted using a network theoretical approach by miRNAtarget.com™. Predicted miRNA targets were investigated by Gene Ontology enrichment analysis and validated by comparing network metrics to differentially expressed mRNA data.ResultsIn the interictal PBMC samples 31 miRNAs were differentially expressed (DE) in comparison to healthy controls, including hsa-miR-5189-3p, hsa-miR-96-5p, hsa-miR-3613-5p, hsa-miR-99a-3p, hsa-miR-542-3p. During headache attacks, the top DE miRNAs as compared to the self-control samples in the interictal phase were hsa-miR-3202, hsa-miR-7855-5p, hsa-miR-6770-3p, hsa-miR-1538, and hsa-miR-409-5p. MiRNA-mRNA target prediction and pathway analysis indicated several mRNAs related to immune and inflammatory responses (toll-like receptor and cytokine receptor signalling), neuroinflammation and oxidative stress, also confirmed by mRNA transcriptomics.ConclusionsWe provide here the first evidence for disease- and headache-specific miRNA signatures in the PBMC of migraineurs, which might help to identify novel targets for both prophylaxis and attack therapy.
Multiple Co-Infecting Caliciviruses in Oral Fluid and Enteric Samples of Swine Detected by a Novel RT-qPCR Assay and a 3′RACE-PCR-NGS Method
Caliciviruses including noro- and sapoviruses of family Caliciviridae are important enteric human and swine pathogens, while others, like valoviruses, are less known. In this study, we developed a detection and typing pipeline for the most prevalent swine enteric caliciviruses—sapovirus GIII (Sw-SaV), norovirus GII (Sw-NoV), and valovirus GI (Sw-VaV). The pipeline integrates triplex RT-qPCR, 3′RACE semi-nested PCR, and next-generation sequencing (NovaSeq, Illumina) techniques. A small-scale epidemiological investigation was conducted on archived enteric and, for the first time, on oral fluid/saliva samples of diarrheic and asymptomatic swine of varying ages from Hungary and Slovakia. In enteric samples, Sw-SaV was the most prevalent, detected in 26.26% of samples, primarily in diarrheic pigs with low Cq values, followed by Sw-NoV (2.53%) in nursery pigs. In oral fluid samples, Sw-NoV predominated (7.46%), followed by Sw-SaV (4.39%). Sw-VaVs were sporadically found in both sample types. A natural, asymptomatic Sw-SaV outbreak was retrospectively detected where the transient shedding of the virus was <2 weeks. Complete capsid sequences (n = 59; 43 Sw-SaV, 13 Sw-NoV, and 3 Sw-VaV) including multiple (up to five) co-infecting variants were identified. Sw-SaV sequences belong to seven genotypes, while Sw-NoV and Sw-VaV strains clustered into distinct sub-clades, highlighting the complex diversity of these enteric caliciviruses in swine.
Aedes koreicus, a vector on the rise: Pan-European genetic patterns, mitochondrial and draft genome sequencing
The mosquito Aedes koreicus (Edwards, 1917) is a recent invader on the European continent that was introduced to several new places since its first detection in 2008. Compared to other exotic Aedes mosquitoes with public health significance that invaded Europe during the last decades, this species' biology, behavior, and dispersal patterns were poorly investigated to date. To understand the species' population relationships and dispersal patterns within Europe, a fragment of the cytochrome oxidase I (COI or COX1) gene was sequenced from 130 mosquitoes, collected from five countries where the species has been introduced and/or established. Oxford Nanopore and Illumina sequencing techniques were combined to generate the first complete nuclear and mitochondrial genomic sequences of Ae. koreicus from the European region. The complete genome of Ae. koreicus is 879 Mb. COI haplotype analyses identified five major groups (altogether 31 different haplotypes) and revealed a large-scale dispersal pattern between European Ae. koreicus populations. Continuous admixture of populations from Belgium, Italy, and Hungary was highlighted, additionally, haplotype diversity and clustering indicate a separation of German sequences from other populations, pointing to an independent introduction of Ae. koreicus to Europe. Finally, a genetic expansion signal was identified, suggesting the species might be present in more locations than currently detected. Our results highlight the importance of genetic research of invasive mosquitoes to understand general dispersal patterns, reveal main dispersal routes and form the baseline of future mitigation actions. The first complete genomic sequence also provides a significant leap in the general understanding of this species, opening the possibility for future genome-related studies, such as the detection of 'Single Nucleotide Polymorphism' markers. Considering its public health importance, it is crucial to further investigate the species' population genetic dynamic, including a larger sampling and additional genomic markers.
Aging and disease-relevant gene products in the neuronal transcriptome of the great pond snail (Lymnaea stagnalis): a potential model of aging, age-related memory loss, and neurodegenerative diseases
Modelling of human aging, age-related memory loss, and neurodegenerative diseases has developed into a progressive area in invertebrate neuroscience. Gold standard molluscan neuroscience models such as the sea hare ( Aplysia californica ) and the great pond snail ( Lymnaea stagnalis ) have proven to be attractive alternatives for studying these processes. Until now, A. californica has been the workhorse due to the enormous set of publicly available transcriptome and genome data. However, with growing sequence data, L. stagnalis has started to catch up with A. californica in this respect. To contribute to this and inspire researchers to use molluscan species for modelling normal biological aging and/or neurodegenerative diseases, we sequenced the whole transcriptome of the central nervous system of L. stagnalis and screened for the evolutionary conserved homolog sequences involved in aging and neurodegenerative/other diseases. Several relevant molecules were identified, including for example gelsolin, presenilin, huntingtin, Parkinson disease protein 7/Protein deglycase DJ-1, and amyloid precursor protein, thus providing a stable genetic background for L. stagnalis in this field. Our study supports the notion that molluscan species are highly suitable for studying molecular, cellular, and circuit mechanisms of the mentioned neurophysiological and neuropathological processes.
Multiparameter flow cytometric and transcriptional analyis of CD20 positive T-cells in bone marrow in patients of multiple myeloma and monoclonal gammopathy of undetermined significance
CD20+ T-cells were described firstly in peripheral blood and later in bone marrow in patients with hematological tumors, and certain immune-mediated diseases. During our hematological diagnostic work, this peculiar subgroup of lymphocytes has been consistently observed associated with untreated monoclonal gammopathy of undetermined significance (MGUS) and myeloma (MM). Despite the expanding literature data, the exact function of CD20+ T cells remains unclear. We investigated the incidence of CD20+ T-cells in MGUS (n=27), and MM using a larger cohort (n=125) and compared it with control bone marrow samples (n=39). We examined their presence before and after treatment in 32 cases with flow cytometry. Comprehensive flow cytometric analysis included the examination of functional (T-cell activation, cytotoxic molecules and T-cell exhaustion) and maturation markers in a large number of cases. In addition RNA sequencing and subsequent bioinformatics analyses were carried out to detect differentially expressed (DE) genes of FACS sorted CD20+ T-cells versus CD20- T-cells. We found that CD20+ T-cells are phenotypically and transcriptionally different from CD20- T-cells. Elevated incidence of CD20+ T-cells in MGUS and MM and the expression of CD8, NKG2D, and CD28 suggests anti-tumor functionality. Increased PD-1 expression indicates T-cell exhaustion which was mostly detected in the samples of patients with a higher tumor percentage. The majority of CD20+ T-cells are effector or effector memory T-cells. Some of the differentially expressed genes suggest antitumor function via regulating T-cell activation pathways, while other genes involved in tumor escape from immune surveillance by suppressing T-cells or by reprogramming T-cells toward T-cell exhaustion. Our findings suggest that CD20+ T-cells may play a vital role both in immune surveillance and immune escape contributing to progression of multiple myeloma.
Hemokinin-1 induces transcriptomic alterations in pain-related signaling processes in rat primary sensory neurons independent of NK1 tachykinin receptor activation
The tachykinin hemokinin-1 (HK-1) is involved in immunological processes, inflammation, and pain. Although the neurokinin 1 receptor (NK1R) is described as its main target, several effects are mediated by currently unidentified receptor(s). The role of HK-1 in pain is controversial, depending on the involvement of peripheral and central sensitization mechanisms in different models. We earlier showed the ability of HK-1 to activate the trigeminovascular system, but the mechanisms need to be clarified. Therefore, in this study, we investigated HK-1-induced transcriptomic alterations in cultured rat trigeminal ganglion (TRG) primary sensory neurons. HK-1 was applied for 6 or 24 h in 1 μM causing calcium-influx in these neurons, 500 nM not inducing calcium-entry was used for comparison. Next-generation sequencing was performed on the isolated RNA, and transcriptomic changes were analyzed to identify differentially expressed (DE) genes. Functional analysis was performed for gene annotation using the Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Reactome databases. NK1R and Neurokinin receptor 2 (NK2R) were not detected. Neurokinin receptor 3 (NK3R) was around the detection limit, which suggests the involvement of other NKR isoforms or other receptors in HK-1-induced sensory neuronal activation. We found protease-activated receptor 1 (PAR1) and epidermal growth factor receptor (EGFR) as DE genes in calcium signaling. The transmembrane protein anthrax toxin receptor 2 (ANTXR2), a potential novel pain-related target, was upregulated. Acid-sensing ion channel 1; 3 (Asic1,3), N-methyl-D-aspartate (NMDA) and alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) glutamate receptors decreased, myelin production and maintenance related genes (Mbp, Pmp2, Myef2, Mpz) and GNDF changed by HK-1 treatment. Our data showed time and dose-dependent effects of HK-1 in TRG cell culture. Result showed calcium signaling as altered event, however, we did not detect any of NK receptors. Presumably, the activation of TRG neurons is independent of NK receptors. ANTXR2 is a potential new target, PAR-1 has also important role in pain, however their connection to HK-1 is unknown. These findings might highlight new targets or key mediators to solve how HK-1 acts on TRG.
Emergence of OXA-48-like Carbapenemase-Producing Escherichia coli in Baranya County, Hungary
Background: Carbapenem-resistant Escherichia coli (CREC) producing OXA-48-like carbapenemase was first detected in Hungary in 2022. The aim of the present study was to characterize such strains isolated in 2022–2025 in Baranya County, Hungary. Methods: Antibiotic susceptibility and the whole-genome sequence (WGS) of E. coli isolates, identified as OXA-48-like carbapenemase producers using the CARBA-5 NG test, were established. The transferability of blaOXA-48-like plasmids was tested by conjugation. Results: Of the 6722 non-repeat E. coli isolates, 6 produced an OXA-48-like carbapenemase. They exhibited variable resistance to ertapenem and were susceptible to imipenem and meropenem. WGS revealed that all OXA-48-like producer E. coli belonged to high-risk clones: two clonally related OXA-181-producer E. coli ST405 were isolated in Hospital A, three OXA-244-producing E. coli ST38 (two identical via cgMLST from Hospital B), and an OXA-48-producing E. coli ST69. The blaOXA-48 and blaOXA-244 genes were chromosomally located, while blaOXA-181 was on a non-conjugative IncFIB-IncFIC plasmid. So far, the blaOXA-181-bearing plasmid of this incompatibility type has only been described in Ghana, but all blaOXA-48-like gene-carrying transposons in this study have already been identified in Europe and other continents. The E. coli ST38 isolates, showing close association based on core genome SNP distances to European and Qatari strains, belonged to Cluster A and harbored blaCTX-M-27. All but the E. coli ST69 isolate had cephalosporinase gene(s). Conclusions: This study describes small-scale intra-hospital transfers of OXA-48-like carbapenemase-producer E. coli. Interestingly, E. coli ST405 of Hungary carried blaOXA-181 on an IncFIB-IncFIC plasmid, which has only been reported from Africa so far.