Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
9 result(s) for "Utrero-Rico, Alberto"
Sort by:
Longitudinal dynamics of SARS-CoV-2-specific cellular and humoral immunity after natural infection or BNT162b2 vaccination
The timing of the development of specific adaptive immunity after natural SARS-CoV-2 infection, and its relevance in clinical outcome, has not been characterized in depth. Description of the long-term maintenance of both cellular and humoral responses elicited by real-world anti-SARS-CoV-2 vaccination is still scarce. Here we aimed to understand the development of optimal protective responses after SARS-CoV-2 infection and vaccination. We performed an early, longitudinal study of S1-, M- and N-specific IFN-γ and IL-2 T cell immunity and anti-S total and neutralizing antibodies in 88 mild, moderate or severe acute COVID-19 patients. Moreover, SARS-CoV-2-specific adaptive immunity was also analysed in 234 COVID-19 recovered subjects, 28 uninfected BNT162b2-vaccinees and 30 uninfected healthy controls. Upon natural infection, cellular and humoral responses were early and coordinated in mild patients, while weak and inconsistent in severe patients. The S1-specific cellular response measured at hospital arrival was an independent predictive factor against severity. In COVID-19 recovered patients, four to seven months post-infection, cellular immunity was maintained but antibodies and neutralization capacity declined. Finally, a robust Th1-driven immune response was developed in uninfected BNT162b2-vaccinees. Three months post-vaccination, the cellular response was comparable, while the humoral response was consistently stronger, to that measured in COVID-19 recovered patients. Thus, measurement of both humoral and cellular responses provides information on prognosis and protection from infection, which may add value for individual and public health recommendations.
Tolerogenic Role of Myeloid Suppressor Cells in Organ Transplantation
Myeloid-derived suppressor cells (MDSC) are a heterogeneous population of immature cells of myeloid origin with a specific immune inhibitory function that negatively regulates the adaptive immune response. Since MDSC participate in the promotion of tolerance in the context of organ transplantation, therapeutic strategies that regulate the induction and development of MDSC have been the center of scientist attention. Here we review literature regarding induction of MDSC with demonstrated suppressive function among different types of allografts and their mechanism of action. While manipulation of MDSC represents a potential therapeutic approach for the promotion of donor specific tolerance in solid organ transplantation, further characterization of their specific phenotype, which distinguishes MDSC from non-suppressive myeloid cells, and detailed evaluation of the inhibitory mechanism that determines their suppressive function, is necessary for the realistic application of MDSC as biomarkers in health and disease and their potential use as immune cell therapy in organ transplantation.
Cellular and humoral immune responses and breakthrough infections after three SARS-CoV-2 mRNA vaccine doses
SARS-CoV-2 vaccination has proven the most effective measure to control the COVID-19 pandemic. Booster doses are being administered with limited knowledge on their need and effect on immunity. To determine the duration of specific T cells, antibodies and neutralization after 2-dose vaccination, to assess the effect of a third dose on adaptive immunity and to explore correlates of protection against breakthrough infection. 12-month longitudinal assessment of SARS-CoV-2-specific T cells, IgG and neutralizing antibodies triggered by 2 BNT162b2 doses followed by a third mRNA-1273 dose in a cohort of 77 healthcare workers: 17 with SARS-CoV-2 infection prior to vaccination (recovered) and 60 naïve. Peak levels of cellular and humoral response were achieved 2 weeks after the second dose. Antibodies declined thereafter while T cells reached a plateau 3 months after vaccination. The decline in neutralization was specially marked in naïve individuals and it was this group who benefited most from the third dose, which resulted in a 20.9-fold increase in neutralization. Overall, recovered individuals maintained higher levels of T cells, antibodies and neutralization 1 to 6 months post-vaccination than naïve. Seventeen asymptomatic or mild SARS-CoV-2 breakthrough infections were reported during follow-up, only in naïve individuals. This viral exposure boosted adaptive immunity. High peak levels of T cells and neutralizing antibodies 15 days post-vaccination associated with protection from breakthrough infections. Booster vaccination in naïve individuals and the inclusion of viral antigens other than spike in future vaccine formulations could be useful strategies to prevent SARS-CoV-2 breakthrough infections.
Alterations in Circulating Monocytes Predict COVID-19 Severity and Include Chromatin Modifications Still Detectable Six Months after Recovery
An early analysis of circulating monocytes may be critical for predicting COVID-19 course and its sequelae. In 131 untreated, acute COVID-19 patients at emergency room arrival, monocytes showed decreased surface molecule expression, including low HLA-DR, in association with an inflammatory cytokine status and limited anti-SARS-CoV-2-specific T cell response. Most of these alterations had normalized in post-COVID-19 patients 6 months after discharge. Acute COVID-19 monocytes transcriptome showed upregulation of anti-inflammatory tissue repair genes such as BCL6, AREG and IL-10 and increased accessibility of chromatin. Some of these transcriptomic and epigenetic features still remained in post-COVID-19 monocytes. Importantly, a poorer expression of surface molecules and low IRF1 gene transcription in circulating monocytes at admission defined a COVID-19 patient group with impaired SARS-CoV-2-specific T cell response and increased risk of requiring intensive care or dying. An early analysis of monocytes may be useful for COVID-19 patient stratification and for designing innate immunity-focused therapies.
A Short Corticosteroid Course Reduces Symptoms and Immunological Alterations Underlying Long-COVID
Despite the growing number of patients with persistent symptoms after acute SARS-CoV-2 infection, the pathophysiology underlying long-COVID is not yet well characterized, and there is no established therapy. We performed a deep immune profiling in nine patients with persistent symptoms (PSP), before and after a 4-day prednisone course, and five post-COVID-19 patients without persistent symptoms (NSP). PSP showed a perturbed distribution of circulating mononuclear cell populations. Symptoms in PSP were accompanied by a pro-inflammatory phenotype characterized by increased conventional dendritic cells and augmented expression of antigen presentation, co-stimulation, migration, and activation markers in monocytes. The adaptive immunity compartment in PSP showed a Th1-predominance, decreased naïve and regulatory T cells, and augmentation of the PD-1 exhaustion marker. These immune alterations reverted after the corticosteroid treatment and were maintained during the 4-month follow-up, and their normalization correlated with clinical amelioration. The current work highlights an immunopathogenic basis together with a possible role for steroids in the treatment for long-COVID.
Development of Potent Cellular and Humoral Immune Responses in Long-Term Hemodialysis Patients After 1273-mRNA SARS-CoV-2 Vaccination
Long-term hemodialysis (HD) patients are considered vulnerable and at high-risk of developing severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) infection due to their immunocompromised condition. Since COVID-19 associated mortality rates are higher in HD patients, vaccination is critical to protect them. The response towards vaccination against COVID-19 in HD patients is still uncertain and, in particular the cellular immune response is not fully understood. We monitored the humoral and cellular immune responses by analysis of the serological responses and Spike-specific cellular immunity in COVID-19-recovered and naïve HD patients in a longitudinal study shortly after vaccination to determine the protective effects of 1273-mRNA vaccination against SARS-CoV-2 in these high-risk patients. In naïve HD patients, the cellular immune response measured by IL-2 and IFN-ɣ secretion needed a second vaccine dose to significantly increase, with a similar pattern for the humoral response. In contrast, COVID-19 recovered HD patients developed a potent and rapid cellular and humoral immune response after the first vaccine dose. Interestingly, when comparing COVID-19 recovered healthy volunteers (HV), previously vaccinated with BNT162b2 vaccine to HD patients vaccinated with 1273-mRNA, these exhibited a more robust immune response that is maintained longitudinally. Our results indicate that HD patients develop strong cellular and humoral immune responses to 1273-mRNA vaccination and argue in favor of personalized immune monitoring studies in HD patients, especially if COVID-19 pre-exposed, to adapt COVID-19 vaccination protocols for this immunocompromised population.
An Early Th1 Response Is a Key Factor for a Favorable COVID-19 Evolution
The Th1/Th2 balance plays a crucial role in the progression of different pathologies and is a determining factor in the evolution of infectious diseases. This work has aimed to evaluate the early, or on diagnosis, T-cell compartment response, T-helper subsets and anti-SARS-CoV-2 antibody specificity in COVID-19 patients and to classify them according to evolution based on infection severity. A unicenter, randomized group of 146 COVID-19 patients was divided into four groups in accordance with the most critical events during the course of disease. The immunophenotype and T-helper subsets were analyzed by flow cytometry. Asymptomatic SARS-CoV-2 infected individuals showed a potent and robust Th1 immunity, with a lower Th17 and less activated T-cells at the time of sample acquisition compared not only with symptomatic patients, but also with healthy controls. Conversely, severe COVID-19 patients presented with Th17-skewed immunity, fewer Th1 responses and more activated T-cells. The multivariate analysis of the immunological and inflammatory parameters, together with the comorbidities, showed that the Th1 response was an independent protective factor for the prevention of hospitalization (OR 0.17, 95% CI 0.03–0.81), with an AUC of 0.844. Likewise, the Th1 response was found to be an independent protective factor for severe forms of the disease (OR 0.09, 95% CI: 0.01–0.63, p = 0.015, AUC: 0.873). In conclusion, a predominant Th1 immune response in the acute phase of the SARS-CoV-2 infection could be used as a tool to identify patients who might have a good disease evolution.
Hemodialysis-Associated Immune Dysregulation in SARS-CoV-2-Infected End-Stage Renal Disease Patients
Patients on hemodialysis show dysregulated immunity, basal hyperinflammation and a marked vulnerability to COVID-19. We evaluated the immune profile in COVID-19 hemodialysis patients and the changes associated with clinical deterioration after the hemodialysis session. Recruited patients included eight hemodialysis subjects with active, PCR-confirmed SARS-CoV-2 infection, five uninfected hemodialysis patients and five healthy controls. In SARS-CoV-2-infected hemodialysis patients TNF-α, IL-6 and IL-8 were particularly increased. Lymphopenia was mostly due to reduction in CD4+ T, B and central memory CD8+ T cells. There was a predominance of classical and intermediate monocytes with reduced HLA-DR expression and enhanced production of pro-inflammatory molecules. Immune parameters were analysed pre- and post-hemodialysis in three patients with COVID-19 symptoms worsening after the hemodialysis session. There was a higher than 2.5-fold increase in GM-CSF, IFN-γ, IL-1β, IL-2, IL-6, IL-17A and IL-21 in serum, and augmentation of monocytes-derived TNF-α, IL-1β and IL-8 and CXCL10 (p < 0.05). In conclusion, COVID-19 in hemodialysis patients associates with alteration of lymphocyte subsets, increasing of pro-inflammatory cytokines and monocyte activation. The observed worsening during the hemodialysis session in some patients was accompanied by augmentation of particular inflammatory cytokines, which might suggest biomarkers and therapeutic targets to prevent or mitigate the hemodialysis-related deterioration during SARS-CoV-2 infection.
Age-dependent association of clonal hematopoiesis with COVID-19 mortality in patients over 60 years
Clonal hematopoiesis, especially that of indeterminate potential (CHIP), has been associated with age-related diseases, such as those contributing to a more severe COVID-19. Four studies have attempted to associate CHIP with COVID-19 severity without conclusive findings. In the present work, we explore the association between CHIP and COVID-19 mortality. Genomic DNA extracted from peripheral blood of COVID-19 patients ( n  = 241 deceased, n  = 239 survivors) was sequenced with the Myeloid Solutions™ panel of SOPHiA Genetics. The association between clonality and age and clonality and mortality was studied using logistic regression models adjusted for sex, ethnicity, and comorbidities. The association with mortality was performed with patients stratified into four groups of age according to the quartiles of the distribution: 60–74 years, 75–84 years, 85–91 years, and 92–101 years. Clonality was found in 38% of the cohort. The presence of CHIP variants, but not the number, significantly increased with age in the entire cohort of COVID-19 patients, as well as in the group of survivors ( p  < 0.001). When patients were stratified by age and the analysis adjusted, CHIP classified as pathogenic/likely pathogenic was significantly more represented in deceased patients compared with survivors in the group of 75–84 years (34.6% vs 13.7%, p  = 0.020). We confirmed the well-established linear relationship between age and clonality in the cohort of COVID-19 patients and found a significant association between pathogenic/likely pathogenic CHIP and mortality in patients from 75 to 84 years that needs to be further validated.