Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
114 result(s) for "Václavík, Tomáš"
Sort by:
Global impacts of future cropland expansion and intensification on agricultural markets and biodiversity
With rising demand for biomass, cropland expansion and intensification represent the main strategies to boost agricultural production, but are also major drivers of biodiversity decline. We investigate the consequences of attaining equal global production gains by 2030, either by cropland expansion or intensification, and analyse their impacts on agricultural markets and biodiversity. We find that both scenarios lead to lower crop prices across the world, even in regions where production decreases. Cropland expansion mostly affects biodiversity hotspots in Central and South America, while cropland intensification threatens biodiversity especially in Sub-Saharan Africa, India and China. Our results suggest that production gains will occur at the costs of biodiversity predominantly in developing tropical regions, while Europe and North America benefit from lower world market prices without putting their own biodiversity at risk. By identifying hotspots of potential future conflicts, we demonstrate where conservation prioritization is needed to balance agricultural production with conservation goals. The increase in needs for agricultural commodities is projected to outpace the growth of farmland production globally, leading to high pressure on farming systems in the next decades. Here, the authors investigate the future impact of cropland expansion and intensification on agricultural markets and biodiversity, and suggest the need for balancing agricultural production with conservation goals.
Predicted climate change will increase the truffle cultivation potential in central Europe
Climate change affects the distribution of many species, including Burgundy and Périgord truffles in central and southern Europe, respectively. The cultivation potential of these high-prized cash crops under future warming, however, remains highly uncertain. Here we perform a literature review to define the ecological requirements for the growth of both truffle species. This information is used to develop niche models, and to estimate their cultivation potential in the Czech Republic under current (2020) and future (2050) climate conditions. The Burgundy truffle is already highly suitable for cultivation on ~ 14% of agricultural land in the Czech Republic (8486 km 2 ), whereas only ~ 8% of the warmest part of southern Moravia are currently characterised by a low suitability for Périgord truffles (6418 km 2 ). Though rising temperatures under RCP8.5 will reduce the highly suitable cultivation areas by 7%, the 250 km 2 (3%) expansion under low-emission scenarios will stimulate Burgundy truffles to benefit from future warming. Doubling the moderate and expanding the highly suitable land by 352 km 2 in 2050, the overall cultivation potential for Périgord truffles will rise substantially. Our findings suggest that Burgundy and Périgord truffles could become important high-value crops for many regions in central Europe with alkaline soils. Although associated with uncertainty, long-term investments in truffle cultivation could generate a wide range of ecological and economic benefits.
Archetype analysis in sustainability research: methodological portfolio and analytical frontiers
In sustainability research, archetype analysis reveals patterns of factors and processes that repeatedly shape social-ecological systems. These patterns help improve our understanding of global concerns, including vulnerability, land management, food security, and governance. During the last decade, the portfolio of methods used to investigate archetypes has been growing rapidly. However, these methods differ widely in their epistemological and normative underpinnings, data requirements, and suitability to address particular research purposes. Therefore, guidance is needed for systematically choosing methods in archetype analysis. We synthesize strengths and weaknesses of key methods used to identify archetypes. Demonstrating that there is no \"one-size-fits-all\" approach, we discuss advantages and shortcomings of a range of methods for archetype analysis in sustainability research along gradients that capture the treatment of causality, normativity, spatial variations, and temporal dynamics. Based on this discussion, we highlight seven analytical frontiers that bear particular potential for tackling methodological limitations. As a milestone in archetype analysis, our synthesis supports researchers in reflecting on methodological implications, including opportunities and limitations related to causality, normativity, space, and time considerations in view of specific purposes and research questions. This enables innovative research designs in future archetype analysis, thereby contributing to the advancement of sustainability research and decision-making.
Response of endangered bird species to land-use changes in an agricultural landscape in Germany
Land-use intensification in agroecosystems has led to population declines in many taxonomic groups, especially farmland birds. Two contrasting conservation strategies have therefore been proposed: land sharing (the integration of biodiversity conservation in low-intensity agriculture) and land sparing (the spatial separation of high-yielding agriculture and areas for conservation). Despite the large academic interest in this field, only few studies have taken into account stakeholders’ perspectives of these strategies when assessing conservation implications. We modeled the effects of three land-use scenarios (a business-as-usual, a land-sharing, and a land-sparing scenario), developed together with regional stakeholders, on the habitat area of 13 regionally endangered bird species in the Middle Mulde River Basin (Saxony, Germany). We used random forest models based on environmental variables relating to land-use/cover, climate and soil characteristics, occurrence of linear landscape elements (hedges and tree rows), and distance to water and major roads. Responses to the three land-use scenarios were species-specific, but extensively managed permanent grassland and the density of forest edges were positively associated with the occurrence of most bird species. Overall, the land-sharing scenario provided the largest breeding habitat area: 76% of the species had a significant (p < 0.05) increase in breeding habitat, and none showed a significant decrease. Our findings confirm that balancing the different, often contrasting habitat requirements of multiple species is a key challenge in conservation and landscape management. Land sharing, which local stakeholders identified as the most desirable scenario, is a promising strategy for the conservation of endangered birds in agricultural landscapes like our study region.
Landscape composition, configuration, and trophic interactions shape arthropod communities in rice agroecosystems
1. Increasing landscape heterogeneity of agroecosystems can enhance natural enemy populations and promote biological control. However, little is known about the multiscale effects of landscape heterogeneity on arthropod communities in rice agroecosystems, especially in combination with trophic interactions. 2. We examined for the first time how landscape heterogeneity, measured by four independent metrics of landscape composition and configuration at three spatial scales, affected species abundance and species richness of rice arthropods within four functional groups and the abundance of the most common species at 28 sites in the Philippines. We additionally examined the influence of trophic interactions among these functional groups. 3. We found that both the compositional and configurational landscape heterogeneity in combination with trophic interactions determined the structure of rice-arthropod communities. Herbivore abundance decreased with increasing landscape diversity. The abundance of parasitoids and species richness of both parasitoids and predators increased with the structural connectivity of rice bunds. Fragmentation of the rice landscape had a clear negative effect on most arthropod groups, except for highly mobile predatory arthropods. Abundance of common predators and detritivore species decreased with increasing complexity in the shape of rice patches. 4. Trophic interactions, measured as the abundance of prey, outweighed the importance of landscape heterogeneity for predators. In contrast, parasitoids responded positively to configurational landscape heterogeneity but were unaffected by prey abundance. 5. Synthesis and applications. Our research shows how landscape heterogeneity and trophic interactions have different effects on different functional groups. While predator abundance was solely driven by the availability of prey, all other functional groups in the rice-arthropod community were significantly affected by the composition and configuration of surrounding landscape features. Landscape management aiming to improve biodiversity and biological control in rice agroeco-systems should promote a diversity of land uses and habitat types within 100-300 m radii to reduce the presence of pests. Management practices should also focus on maintaining smaller rice patches and the structural connectivity of rice bunds to enhance populations of the natural enemies of rice pests. Future research should focus on the temporal and spatial manipulation of rice fields to maximize the effects of biological control.
Global patterns of agricultural land‐use intensity and vertebrate diversity
AIM: Land‐use change is the single biggest cause of biodiversity loss. With a rising demand for resources, understanding how and where agriculture threatens biodiversity is of increasing importance. Agricultural expansion has received much attention, but where high agricultural land‐use intensity (LUI) threatens biodiversity remains unclear. We address this knowledge gap with two main research questions: (1) Where do global patterns of LUI coincide with the spatial distribution of biodiversity? (2) Where are regions of potential conflict between different aspects of high LUI and high biodiversity? LOCATION: Global. METHODS: We overlaid thirteen LUI metrics with endemism richness, a range size‐weighted species richness indicator, for mammals, birds and amphibians. We then used local indicators of spatial association to delineate statistically significant (P < 0.05) areas of high and low LUI associated with biodiversity. RESULTS: Patterns of LUI are heterogeneously distributed in areas of high endemism richness, thus discouraging the use of a single metric to represent LUI. Many regions where high LUI and high endemism richness coincide, for example in South America, China and Eastern Africa, are not within currently recognized biodiversity hotspots. Regions of currently low LUI and high endemism richness, found in many parts of Mesoamerica, Eastern Africa and Southeast Asia, may be at risk as intensification accelerates. MAIN CONCLUSIONS: We provide a global view of the geographic patterns of LUI and its concordance with endemism richness, shedding light on regions where highly intensive agriculture and unique biodiversity coincide. Past assessments of land‐use impacts on biodiversity have either disregarded LUI or included a single metric to measure it. This study demonstrates that such omission can substantially underestimate biodiversity threat. A wider spectrum of relevant LUI metrics needs to be considered when balancing agricultural production and biodiversity.
Landscape heterogeneity filters functional traits of rice arthropods in tropical agroecosystems
Biological control services of agroecosystems depend on the functional diversity of species traits. However, the relationship between arthropod traits and landscape heterogeneity is still poorly understood, especially in tropical rice agroecosystems, which harbor a high diversity of often specialized species. We investigated how landscape heterogeneity, measured by three metrics of landscape composition and configuration, influenced body size, functional group composition, dispersal ability, and vertical distribution of rice arthropods in the Philippines. We found that landscape composition and configuration acted to filter arthropod traits in tropical rice agroecosystems. Landscape diversity and rice habitat fragmentation were the two main gradients influencing rice-arthropod traits, indicating that different rice arthropods have distinct habitat requirements. Whereas small parasitoids and species mostly present in the rice canopy were favored in landscapes with high compositional heterogeneity, predators and medium-sized species occupying the base of the rice plant, including planthoppers, mostly occurred in highly fragmented rice habitats. We demonstrate the importance of landscape heterogeneity as an ecological filter for rice arthropods, identifying how the different components of landscape heterogeneity selected for or against specific functional traits. However, the contrasting effects of landscape parameters on different groups of natural enemies indicate that not all beneficial rice arthropods can be promoted at the same time when using a single land management strategy. Increasing compositional heterogeneity in rice landscapes can promote parasitoids but may also negatively affect predators. Future research should focus on identifying tradeoffs between fragmented rice habitats and structurally diverse landscapes to maximize the presence of multiple groups of beneficial arthropods.
Borrelia miyamotoi and Borrelia burgdorferi sensu lato widespread in urban areas of the Czech Republic
Background Borrelia miyamotoi and Borrelia burgdorferi sensu lato (s.l.) are important zoonotic agents transmitted by Ixodes ricinus ticks, which are widely distributed across Central Europe. Understanding the spatial distribution of these pathogens’ prevalence will help identify areas with increased infection risk and facilitate the implementation of effective preventive measures. Methods We analysed 12,955 I. ricinus ticks collected from 142 towns in the Czech Republic between 2016 and 2018. The ticks were pooled into 2591 groups of five and tested using duplex quantitative polymerase chain reaction (qPCR) for the presence of B. burgdorferi s.l. and B. miyamotoi . For each location, we estimated the overall prevalence of both agents using the EpiTools Epidemiological Calculator for pooled samples and calculated the minimum infection rate (MIR). To assess the potential risk of infection, we combined data on the abundance of nymphs and females with pathogen prevalence at each sampled site. Using a geographic information system (GIS), we mapped the MIR and infection risk of both Borrelia species across all 142 sampled locations and employed a geostatistical method (ordinary kriging) to predict MIR values and infection risk as continuous surfaces across the entire country. Results We detected B. miyamotoi in 110 localities and B. burgdorferi s.l. in all 142 localities. The estimated prevalence of B.   miyamotoi and B. burgdorferi s.l. in the collected ticks was 2.1% (95% confidence interval [CI] 1.8–2.3) and 27.1% (95% CI 26.0–28.3), respectively. For B. miyamotoi , we identified previously unknown, geographically distinct hotspots of MIR up to 8.3%, with MIR slightly higher in females (2.3%) than in males (1.9%) and nymphs (1.8%), though the difference was not statistically significant. In contrast, B. burgdorferi s.l. exhibited ubiquitous presence, with consistently high prevalence nationwide, showing similar MIRs in females (16.2%) and males (16.1%), and slightly lower in nymphs (15.6%). The highest infection risk for B. miyamotoi was 12.4 infected vectors per hour in southeastern Moravia, while the highest risk for B. burgdorferi s.l. reached 78.6 infected vectors per hour in the Bohemian-Moravian Highlands. Conclusions Borrelia miyamotoi is widespread, forming distinct high-prevalence areas in certain regions. Borrelia   burgdorferi  s.l. demonstrates consistently high prevalence across most of the country, except for a few localized areas such as southwestern Czechia. Both pathogens exhibit natural nidality, forming regions with elevated prevalence and infection risk. Long-term time-series data are needed to confirm the spatio-temporal stability of these hotspots. Graphical Abstract
Combined effects of climate and land-use change on the provision of ecosystem services in rice agro-ecosystems
Irrigated rice croplands are among the world's most important agro-ecosystems. They provide food for more than 3.5 billion people and a range of other ecosystem services (ESS). However, the sustainability of rice agro-ecosystems is threatened by continuing climate and land-use changes. To estimate their combined effects on a bundle of ESS, we applied the vegetation and hydrology model LPJmL to seven study areas in the Philippines and Vietnam. We quantified future changes in the provision of four essential ESS (carbon storage, carbon sequestration, provision of irrigation water and rice production) under two climate scenarios (until 2100) and three site-specific land-use scenarios (until 2030), and examined the synergies and trade-offs in ESS responses to these drivers. Our results show that not all services can be provided in the same amounts in the future. In the Philippines and Vietnam the projections estimated a decrease in rice yields (by approximately 30%) and in carbon storage (by 15%) and sequestration (by 12%) towards the end of the century under the current land-use pattern. In contrast, the amount of available irrigation water was projected to increase in all scenarios by 10%-20%. However, the results also indicate that land-use change may partially offset the negative climate impacts in regions where cropland expansion is possible, although only at the expense of natural vegetation. When analysing the interactions between ESS, we found consistent synergies between rice production and carbon storage and trade-offs between carbon storage and provision of irrigation water under most scenarios. Our results show that not only the effects of climate and land-use change alone but also the interaction between ESS have to be considered to allow sustainable management of rice agro-ecosystems under global change.