Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
LanguageLanguage
-
SubjectSubject
-
Item TypeItem Type
-
DisciplineDiscipline
-
YearFrom:-To:
-
More FiltersMore FiltersIs Peer Reviewed
Done
Filters
Reset
84
result(s) for
"Vallarino, Jose"
Sort by:
Decreased Levels of Thioredoxin o1 Influences Stomatal Development and Aperture but Not Photosynthesis under Non-Stress and Saline Conditions
2021
Salinity has a negative impact on plant growth, with photosynthesis being downregulated partially due to osmotic effect and enhanced cellular oxidation. Redox signaling contributes to the plant response playing thioredoxins (TRXs) a central role. In this work we explore the potential contribution of Arabidopsis TRXo1 to the photosynthetic response under salinity analyzing Arabidopsis wild-type (WT) and two Attrxo1 mutant lines in their growth under short photoperiod and higher light intensity than previous reported works. Stomatal development and apertures and the antioxidant, hormonal and metabolic acclimation are also analyzed. In control conditions mutant plants displayed less and larger developed stomata and higher pore size which could underlie their higher stomatal conductance, without being affected in other photosynthetic parameters. Under salinity, all genotypes displayed a general decrease in photosynthesis and the oxidative status in the Attrxo1 mutant lines was altered, with higher levels of H2O2 and NO but also higher ascorbate/glutathione (ASC/GSH) redox states than WT plants. Finally, sugar changes and increases in abscisic acid (ABA) and NO may be involved in the observed higher stomatal response of the TRXo1-altered plants. Therefore, the lack of AtTRXo1 affected stomata development and opening and the mutants modulate their antioxidant, metabolic and hormonal responses to optimize their adaptation to salinity.
Journal Article
From Central to Specialized Metabolism: An Overview of Some Secondary Compounds Derived From the Primary Metabolism for Their Role in Conferring Nutritional and Organoleptic Characteristics to Fruit
2019
Fruit flavor and nutritional characteristics are key quality traits and ones of the main factors influencing consumer preference. Central carbon metabolism, also known as primary metabolism, contributes to the synthesis of intermediate compounds that act as precursors for plant secondary metabolism. Specific and specialized metabolic pathways that evolved from primary metabolism play a key role in the plant's interaction with its environment. In particular, secondary metabolites present in the fruit serve to increase its attractiveness to seed dispersers and to protect it against biotic and abiotic stresses. As a consequence, several important organoleptic characteristics, such as aroma, color, and fruit nutritional value, rely upon secondary metabolite content. Phenolic and terpenoid compounds are large and diverse classes of secondary metabolites that contribute to fruit quality and have their origin in primary metabolic pathways, while the delicate aroma of ripe fruits is formed by a unique combination of hundreds of volatiles that are derived from primary metabolites. In this review, we show that the manipulation of primary metabolism is a powerful tool to engineer quality traits in fruits, such as the phenolic, terpenoid, and volatile content. The enzymatic reactions responsible for the accumulation of primary precursors are bottlenecks in the transfer of metabolic flux from central to specialized metabolism and should be taken into account to increase the yield of the final products of the biosynthetic pathways. In addition, understanding the connection and regulation of the carbon flow between primary and secondary metabolism is a key factor for the development of fruit cultivars with enhanced organoleptic and nutritional traits.
Journal Article
Associations between acute exposures to PM2.5 and carbon dioxide indoors and cognitive function in office workers: a multicountry longitudinal prospective observational study
by
Cao, Xiaodong
,
Flanigan, Skye
,
MacNaughton, Piers
in
Air pollution
,
Air pollution effects
,
Carbon dioxide
2021
Despite evidence of the air pollution effects on cognitive function, little is known about the acute impact of indoor air pollution on cognitive function among the working-age population. We aimed to understand whether cognitive function was associated with real-time indoor concentrations of particulate matter (PM2.5) and carbon dioxide (CO2). We conducted a prospective observational longitudinal study among 302 office workers in urban commercial buildings located in six countries (China, India, Mexico, Thailand, the United States of America, and the United Kingdom). For 12 months, assessed cognitive function using the Stroop color-word test and addition–subtraction test (ADD) via a mobile research app. We found that higher PM2.5 and lower ventilation rates, as assessed by CO2 concentration, were associated with slower response times and reduced accuracy (fewer correct responses per minute) on the Stroop and ADD for eight out ten test metrics. Each interquartile (IQR) increase in PM2.5 (IQR = 8.8 \\(\\,\\mu \\)g m−3) was associated with a 0.82% (95% CI: 0.42, 1.21) increase in Stroop response time, a 6.18% (95% CI: 2.08, 10.3) increase in Stroop interference time, a 0.7% (95% CI: −1.38, −0.01) decrease in Stroop throughput, and a 1.51% (95% CI: −2.65, −0.37) decrease in ADD throughput. For CO2, an IQR increase (IQR = 315 ppm) was associated with a 0.85% (95% CI: 0.32, 1.39) increase in Stroop response time, a 7.88% (95% CI: 2.08, 13.86) increase in Stroop interference time, a 1.32% (95% CI: −2.3, −0.38) decrease in Stroop throughput, and a 1.13% (95% CI: 0.18, 2.11) increase in ADD response time. A sensitivity analysis showed significant association between PM2.5 in four out of five cognitive test performance metrics only at levels above 12 \\(\\,\\mu \\)g m−3. Enhanced filtration and higher ventilation rates that exceed current minimum targets are essential public health strategies that may improve employee productivity.
Journal Article
Sugar Signaling During Fruit Ripening
2020
Sugars play a key role in fruit quality, as they directly influence taste, and thus consumer acceptance. Carbohydrates are the main resources needed by the plant for carbon and energy supply and have been suggested to be involved in all the important developmental processes, including embryogenesis, seed germination, stress responses, and vegetative and reproductive growth. Recently, considerable progresses have been made in understanding regulation of fruit ripening mechanisms, based on the role of ethylene, auxins, abscisic acid, gibberellins, or jasmonic acid, in both climacteric and non-climacteric fruits. However, the role of sugar and its associated molecular network with hormones in the control of fruit development and ripening is still poorly understood. In this review, we focus on sugar signaling mechanisms described up to date in fruits, describing their involvement in ripening-associated processes, such as pigments accumulation, and their association with hormone transduction pathways, as well as their role in stress-related responses.
Journal Article
Airplane pilot flight performance on 21 maneuvers in a flight simulator under varying carbon dioxide concentrations
by
Cao, Xiaodong
,
Flanigan, Skye
,
MacNaughton, Piers
in
Automatic pilots
,
Carbon dioxide
,
Cognitive ability
2019
BackgroundRecent studies suggest that carbon dioxide has an impact on cognitive function performance of office workers at concentrations previously thought to be benign (1000–2500 ppm). The only available data for CO2 on the flight deck indicate that the average CO2 concentrations are typically <1000 ppm, but the 95th percentile concentration can be as high as 1400 ppm, depending on airplane type.MethodsWe recruited 30 active commercial airline pilots to fly three 3-h flight segments in an FAA-approved flight simulator with each segment at a different CO2 concentration on the flight deck (700, 1500, 2500 ppm). CO2 concentrations were modified by introducing ultra-pure CO2 into the simulator; ventilation rates remained the same for each segment. The pilots performed a range of predefined maneuvers of varying difficulty without the aid of autopilot, and were assessed by a FAA Designated Pilot Examiner according to FAA Practical Test Standards. Pilots and the Examiner were blinded to test conditions and the order of exposures was randomized.ResultsCompared to segments at a CO2 concentration of 2500 ppm, the odds of passing a maneuver as rated by the Examiner in the simulator were 1.52 (95% CI: 1.02–2.25) times higher when pilots were exposed to 1500 ppm and 1.69 (95% CI: 1.11–2.55) times higher when exposed to 700 ppm, controlling for maneuver difficulty, Examiner and order of maneuvers.DiscussionExaminer rating captured a wider range of performance indicators than output from the flight simulator, which can characterize only a few quantitative aspects of the flight performance. More broadly, these findings suggest that there is a direct effect of carbon dioxide on performance, independent of ventilation, with implications for many other indoor environments that routinely experience CO2 concentrations above 1000 ppm.
Journal Article
Metabolite Changes during Postharvest Storage: Effects on Fruit Quality Traits
2020
Metabolic changes occurring in ripe or senescent fruits during postharvest storage lead to a general deterioration in quality attributes, including decreased flavor and ‘off-aroma’ compound generation. As a consequence, measures to reduce economic losses have to be taken by the fruit industry and have mostly consisted of storage at cold temperatures and the use of controlled atmospheres or ripening inhibitors. However, the biochemical pathways and molecular mechanisms underlying fruit senescence in commercial storage conditions are still poorly understood. In this sense, metabolomic platforms, enabling the profiling of key metabolites responsible for organoleptic and health-promoting traits, such as volatiles, sugars, acids, polyphenols and carotenoids, can be a powerful tool for further understanding the biochemical basis of postharvest physiology and have the potential to play a critical role in the identification of the pathways affected by fruit senescence. Here, we provide an overview of the metabolic changes during postharvest storage, with special attention to key metabolites related to fruit quality. The potential use of metabolomic approaches to yield metabolic markers useful for chemical phenotyping or even storage and marketing decisions is highlighted.
Journal Article
Reductions of endogenous gibberellin content impact fruit development and modify tomato fruit metabolism during ripening
by
Fernie, Alisdair R.
,
Ribeiro, Dimas Mendes
,
Araújo, Wagner L.
in
Agriculture
,
Amino acids
,
auxins
2025
Gibberellins (GAs) play a crucial role in modulating developmental processes throughout the plant life cycle. They are particularly significant during the transition and maintenance of the reproductive meristem, as well as in facilitating the development of floral organs. Additionally, GAs regulate the early stages of fruit development, in coordination with auxin and cytokinin, likely due to their involvement in both division and cell expansion. However, it remains unclear whether fluctuations in endogenous GA levels influence fruit development and metabolism during ripening. To address this, we investigated tomato mutant plants deficient in GAs biosynthesis (
gib3
, moderately deficient;
gib2
, intermediate deficiency and
gib1
, extremely deficient in GAs). Notably,
gib2
and
gib1
mutants were characterized by a complete interruption of their reproductive development at the floral bud level. Although
gib3
plants displayed a slight delay in fruit development, at the end of fruit ripening both wild type (WT) and
gib3
fruits were highly similar. Only minor differences were found between WT and
gib3
mutant plants in terms of floral development and total fruit yield. Our findings revealed that reduced GA levels in
gib3
mutant did not result in morphological modifications in fruits, and relatively few metabolic changes were observed between genotypes during fruit ripening. Typical metabolic changes during ripening, including increments in amino acids and soluble sugars along with decreases in starch, were observed. Collectively, our study demonstrate that GAs play a crucial role in transitioning plants from the vegetative to reproductive stage and in initiating fruit set.
Key message
Tomato plants with reduced endogenous content of gibberellins show interruption or delay of the reproductive stage.
Journal Article
Heart Rate Variability and Performance of Commercial Airline Pilots during Flight Simulations
by
Cao, Xiaodong
,
Flanigan, Skye
,
MacNaughton, Piers
in
Adult
,
Aircraft accidents & safety
,
Airlines
2019
Pilots undergo a variety of stressors that may affect their performance during all phases of flight. Heart rate variability (HRV) has been considered as a reliable indicator of the parasympathetic and sympathetic activities of human autonomic nervous system, which can be used to characterize the sympathetic stress response of pilots during flight. In this study, thirty active commercial airline pilots were recruited to fly three flight segments in a Federal Aviation Administration (FAA)-certified A320 flight simulator with each segment at a different carbon dioxide (CO2) concentration on the flight deck. The pilots performed a series of maneuvers of varying difficulty, and their performance was evaluated by FAA designated pilot examiners. The HRV metrics (SDNN, RMSSD and LF/HF ratio) of each pilot both before and during flight simulations were measured with a Movisens EcgMove3 sensor. The average SDNN, RMSSD and LF/HF ratio of the pilots during flight simulations were 34.1 ± 12.7 ms, 23.8 ± 10.2 ms and 5.7 ± 2.8 respectively. Decreased HRV was associated with aging, obesity and performing difficult maneuvers. Both CO2 exposure and HRV had an independent effect on the pilot performance, while their interaction was not significant. The generalized additive mixed effect model results showed that a pilot performed better on a maneuver when his stress response was lower, as indicated by higher SDNN and RMSSD and lower LF/HF ratio. An interquartile range (IQR) increase in SDNN (21.97 ms) and RMSSD (16.00 ms) and an IQR decrease in LF/HF ratio (4.69) was associated with an increase in the odds of passing a maneuver by 37%, 22% and 20%, respectively.
Journal Article
Genetic diversity of strawberry germplasm using metabolomic biomarkers
by
Nikoloski, Zoran
,
Fernie, Alisdair R.
,
de Abreu e Lima, Francisco
in
631/114
,
631/449/1870
,
Developmental stages
2018
High-throughput metabolomics technologies can provide the quantification of metabolites levels across various biological processes in different tissues, organs and species, allowing the identification of genes underpinning these complex traits. Information about changes of metabolites during strawberry development and ripening processes is key to aiding the development of new approaches to improve fruit attributes. We used network-based methods and multivariate statistical approaches to characterize and investigate variation in the primary and secondary metabolism of seven domesticated and seven wild strawberry fruit accessions at three different fruit development and ripening stages. Our results demonstrated that
Fragaria
sub-species can be identified solely based on the gathered metabolic profiles. We also showed that domesticated accessions displayed highly similar metabolic changes due to shared domestication history. Differences between domesticated and wild accessions were detected at the level of metabolite associations which served to rank metabolites whose regulation was mostly altered in the process of domestication. The discovery of comprehensive metabolic variation among strawberry accessions offers opportunities to probe into the genetic basis of variation, providing insights into the pathways to relate metabolic variation with important traits.
Journal Article