Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
47 result(s) for "Vallverdú, Montserrat"
Sort by:
Machine Learning Models to Establish the Risk of Being a Carrier of Multidrug-Resistant Bacteria upon Admission to the ICU
Objectives: To establish the risk of being a carrier of multidrug-resistant bacteria (MDR) upon ICU admission, according to the risk factors (RFs) from the Spanish “Resistencia Zero” (RZ) project checklist, using machine learning methodology. Methods: A retrospective cohort study, conducted with a consecutive sample of patients admitted to the ICU between 2014 and 2016. The study analyzed the RZ RFs for MDR, as well as other pathological variables and comorbidities. The study group was randomly divided into a development group (70%) and a validation group (30%). Several machine learning models were used: binary logistic regression, CHAID-type decision tree, and the XGBOOST methodology (version 2.1.0) with SHAP analysis. Results: Data from 2459 patients were analyzed, of whom 210 (8.2%) were carriers of MDR. The risk grew with the accumulation of RF. Binary logistic regression identified colonization or previous infection by MDR, prior antibiotic treatment, living in a nursing home, recent hospitalization, and renal failure as the most influential factors. The CHAID tree detected MDR in 56% of patients with previous colonization or infection, a figure that increased to almost 74% if they had also received antibiotic therapy. The XGBOOST model determined that variables related to antibiotic treatment were the most important. Conclusions: The RZ RFs have limitations in predicting MDR upon ICU admission, and machine learning models offer certain advantages. Not all RFs have the same importance, but their accumulation increases the risk. There is a group of patients with no identifiable RFs, which complicates decisions on preventive isolation.
Regularity of Cardiac Rhythm as a Marker of Sleepiness in Sleep Disordered Breathing
The present study aimed to analyse the autonomic nervous system activity using heart rate variability (HRV) to detect sleep disordered breathing (SDB) patients with and without excessive daytime sleepiness (EDS) before sleep onset. Two groups of 20 patients with different levels of daytime sleepiness -sleepy group, SG; alert group, AG- were selected consecutively from a Maintenance of Wakefulness Test (MWT) and Multiple Sleep Latency Test (MSLT) research protocol. The first waking 3-min window of RR signal at the beginning of each nap test was considered for the analysis. HRV was measured with traditional linear measures and with time-frequency representations. Non-linear measures -correntropy, CORR; auto-mutual-information function, AMIF- were used to describe the regularity of the RR rhythm. Statistical analysis was performed with non-parametric tests. Non-linear dynamic of the RR rhythm was more regular in the SG than in the AG during the first wakefulness period of MSLT, but not during MWT. AMIF (in high-frequency and in Total band) and CORR (in Total band) yielded sensitivity > 70%, specificity >75% and an area under ROC curve > 0.80 in classifying SG and AG patients. The regularity of the RR rhythm measured at the beginning of the MSLT could be used to detect SDB patients with and without EDS before the appearance of sleep onset.
Multiscale Complexity Analysis of the Cardiac Control Identifies Asymptomatic and Symptomatic Patients in Long QT Syndrome Type 1
The study assesses complexity of the cardiac control directed to the sinus node and to ventricles in long QT syndrome type 1 (LQT1) patients with KCNQ1-A341V mutation. Complexity was assessed via refined multiscale entropy (RMSE) computed over the beat-to-beat variability series of heart period (HP) and QT interval. HP and QT interval were approximated respectively as the temporal distance between two consecutive R-wave peaks and between the R-wave apex and T-wave end. Both measures were automatically taken from 24-hour electrocardiographic Holter traces recorded during daily activities in non mutation carriers (NMCs, n = 14) and mutation carriers (MCs, n = 34) belonging to a South African LQT1 founder population. The MC group was divided into asymptomatic (ASYMP, n = 11) and symptomatic (SYMP, n = 23) patients according to the symptom severity. Analyses were carried out during daytime (DAY, from 2PM to 6PM) and nighttime (NIGHT, from 12PM to 4AM) off and on beta-adrenergic blockade (BBoff and BBon). We found that the complexity of the HP variability at short time scale was under vagal control, being significantly increased during NIGHT and BBon both in ASYMP and SYMP groups, while the complexity of both HP and QT variability at long time scales was under sympathetic control, being smaller during NIGHT and BBon in SYMP subjects. Complexity indexes at long time scales in ASYMP individuals were smaller than those in SYMP ones regardless of therapy (i.e. BBoff or BBon), thus suggesting that a reduced complexity of the sympathetic regulation is protective in ASYMP individuals. RMSE analysis of HP and QT interval variability derived from routine 24-hour electrocardiographic Holter recordings might provide additional insights into the physiology of the cardiac control and might be fruitfully exploited to improve risk stratification in LQT1 population.
Assessment of Heart Rate Variability during an Endurance Mountain Trail Race by Multi-Scale Entropy Analysis
The aim of the study was to analyze heart rate variability (HRV) response to high-intensity exercise during a 35-km mountain trail race and to ascertain whether fitness level could influence autonomic nervous system (ANS) modulation. Time-domain, frequency-domain, and multi-scale entropy (MSE) indexes were calculated for eleven mountain-trail runners who completed the race. Many changes were observed, mostly related to exercise load and fatigue. These changes were characterized by increased mean values and standard deviations of the normal-to-normal intervals associated with sympathetic activity, and by decreased differences between successive intervals related to parasympathetic activity. Normalized low frequency (LF) power suggested that ANS modulation varied greatly during the race and between individuals. Normalized high frequency (HF) power, associated with parasympathetic activity, varied considerably over the race, and tended to decrease at the final stages, whereas changes in the LF/HF ratio corresponded to intervals with varying exercise load. MSE indexes, related to system complexity, indicated the existence of many interactions between the heart and its neurological control mechanism. The time-domain, frequency-domain, and MSE indexes were also able to discriminate faster from slower runners, mainly in the more difficult and in the final stages of the race. These findings suggest the use of HRV analysis to study cardiac function mechanisms in endurance sports.
Poincaré plot analysis of cerebral blood flow signals: Feature extraction and classification methods for apnea detection
Rheoencephalography is a simple and inexpensive technique for cerebral blood flow assessment, however, it is not used in clinical practice since its correlation to clinical conditions has not yet been extensively proved. The present study investigates the ability of Poincaré Plot descriptors from rheoencephalography signals to detect apneas in volunteers. A group of 16 subjects participated in the study. Rheoencephalography data from baseline and apnea periods were recorded and Poincaré Plot descriptors were extracted from the reconstructed attractors with different time lags (τ). Among the set of extracted features, those presenting significant differences between baseline and apnea recordings were used as inputs to four different classifiers to optimize the apnea detection. Three features showed significant differences between apnea and baseline signals: the Poincaré Plot ratio (SDratio), its correlation (R) and the Complex Correlation Measure (CCM). Those differences were optimized for time lags smaller than those recommended in previous works for other biomedical signals, all of them being lower than the threshold established by the position of the inflection point in the CCM curves. The classifier showing the best performance was the classification tree, with 81% accuracy and an area under the curve of the receiver operating characteristic of 0.927. This performance was obtained using a single input parameter, either SDratio or R. Poincaré Plot features extracted from the attractors of rheoencephalographic signals were able to track cerebral blood flow changes provoked by breath holding. Even though further validation with independent datasets is needed, those results suggest that nonlinear analysis of rheoencephalography might be a useful approach to assess the correlation of cerebral impedance with clinical changes.
Assessment of Nociceptive Responsiveness Levels during Sedation-Analgesia by Entropy Analysis of EEG
The level of sedation in patients undergoing medical procedures is decided to assure unconsciousness and prevent pain. The monitors of depth of anesthesia, based on the analysis of the electroencephalogram (EEG), have been progressively introduced into the daily practice to provide additional information about the state of the patient. However, the quantification of analgesia still remains an open problem. The purpose of this work was to analyze the capability of prediction of nociceptive responses based on refined multiscale entropy (RMSE) and auto mutual information function (AMIF) applied to EEG signals recorded in 378 patients scheduled to undergo ultrasonographic endoscopy under sedation-analgesia. Two observed categorical responses after the application of painful stimulation were analyzed: the evaluation of the Ramsay Sedation Scale (RSS) after nail bed compression and the presence of gag reflex (GAG) during endoscopy tube insertion. In addition, bispectrum (BIS), heart rate (HR), predicted concentrations of propofol (CeProp) and remifentanil (CeRemi) were annotated with a resolution of 1 s. Results showed that functions based on RMSE, AMIF, HR and CeRemi permitted predicting different stimulation responses during sedation better than BIS.
Clinical Decision Support System to Enhance Quality Control of Spirometry Using Information and Communication Technologies
We recently demonstrated that quality of spirometry in primary care could markedly improve with remote offline support from specialized professionals. It is hypothesized that implementation of automatic online assessment of quality of spirometry using information and communication technologies may significantly enhance the potential for extensive deployment of a high quality spirometry program in integrated care settings. The objective of the study was to elaborate and validate a Clinical Decision Support System (CDSS) for automatic online quality assessment of spirometry. The CDSS was done through a three step process including: (1) identification of optimal sampling frequency; (2) iterations to build-up an initial version using the 24 standard spirometry curves recommended by the American Thoracic Society; and (3) iterations to refine the CDSS using 270 curves from 90 patients. In each of these steps the results were checked against one expert. Finally, 778 spirometry curves from 291 patients were analyzed for validation purposes. The CDSS generated appropriate online classification and certification in 685/778 (88.1%) of spirometry testing, with 96% sensitivity and 95% specificity. Consequently, only 93/778 (11.9%) of spirometry testing required offline remote classification by an expert, indicating a potential positive role of the CDSS in the deployment of a high quality spirometry program in an integrated care setting.
Entropy Measures as Descriptors to Identify Apneas in Rheoencephalographic Signals
Rheoencephalography (REG) is a simple and inexpensive technique that intends to monitor cerebral blood flow (CBF), but its ability to reflect CBF changes has not been extensively proved. Based on the hypothesis that alterations in CBF during apnea should be reflected in REG signals under the form of increased complexity, several entropy metrics were assessed for REG analysis during apnea and resting periods in 16 healthy subjects: approximate entropy (ApEn), sample entropy (SampEn), fuzzy entropy (FuzzyEn), corrected conditional entropy (CCE) and Shannon entropy (SE). To compute these entropy metrics, a set of parameters must be defined a priori, such as, for example, the embedding dimension m, and the tolerance threshold r. A thorough analysis of the effects of parameter selection in the entropy metrics was performed, looking for the values optimizing differences between apnea and baseline signals. All entropy metrics, except SE, provided higher values for apnea periods (p-values < 0.025). FuzzyEn outperformed all other metrics, providing the lowest p-value (p = 0.0001), allowing to conclude that REG signals during apnea have higher complexity than in resting periods. Those findings suggest that REG signals reflect CBF changes provoked by apneas, even though further studies are needed to confirm this hypothesis.
Algorithm for Automatic Forced Spirometry Quality Assessment: Technological Developments
We hypothesized that the implementation of automatic real-time assessment of quality of forced spirometry (FS) may significantly enhance the potential for extensive deployment of a FS program in the community. Recent studies have demonstrated that the application of quality criteria defined by the ATS/ERS (American Thoracic Society/European Respiratory Society) in commercially available equipment with automatic quality assessment can be markedly improved. To this end, an algorithm for assessing quality of FS automatically was reported. The current research describes the mathematical developments of the algorithm. An innovative analysis of the shape of the spirometric curve, adding 23 new metrics to the traditional 4 recommended by ATS/ERS, was done. The algorithm was created through a two-step iterative process including: (1) an initial version using the standard FS curves recommended by the ATS; and, (2) a refined version using curves from patients. In each of these steps the results were assessed against one expert's opinion. Finally, an independent set of FS curves from 291 patients was used for validation purposes. The novel mathematical approach to characterize the FS curves led to appropriate FS classification with high specificity (95%) and sensitivity (96%). The results constitute the basis for a successful transfer of FS testing to non-specialized professionals in the community.
Prediction of Nociceptive Responses during Sedation by Linear and Non-Linear Measures of EEG Signals in High Frequencies
The level of sedation in patients undergoing medical procedures evolves continuously, affected by the interaction between the effect of the anesthetic and analgesic agents and the pain stimuli. The monitors of depth of anesthesia, based on the analysis of the electroencephalogram (EEG), have been progressively introduced into the daily practice to provide additional information about the state of the patient. However, the quantification of analgesia still remains an open problem. The purpose of this work is to improve the prediction of nociceptive responses with linear and non-linear measures calculated from EEG signal filtered in frequency bands higher than the traditional bands. Power spectral density and auto-mutual information function was applied in order to predict the presence or absence of the nociceptive responses to different stimuli during sedation in endoscopy procedure. The proposed measures exhibit better performances than the bispectral index (BIS). Values of prediction probability of Pk above 0.75 and percentages of sensitivity and specificity above 70% were achieved combining EEG measures from the traditional frequency bands and higher frequency bands.