Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
37 result(s) for "Van Bruggen, Robin"
Sort by:
The Ability of Extracellular Vesicles to Induce a Pro-Inflammatory Host Response
Extracellular vesicles (EVs) can modulate the host immune response, executing both pro- and anti-inflammatory effects. As EVs increasingly gain attention as potential carriers for targeted gene and drug delivery, knowledge on the effects of EVs on the host immune response is important. This review will focus on the ability of EVs to trigger a pro-inflammatory host response by activating target cells. The overall view is that EVs can augment an inflammatory response, thereby potentially contributing to organ injury. This pro-inflammatory potential of EVs may hamper its use for therapeutic drug delivery. Whether removal of EVs as a means to reduce a pro-inflammatory or pro-coagulant response during hyper-inflammatory conditions is beneficial remains to be determined. Prior to any proposed therapeutic application, there is a need for further studies on the role of EVs in physiology and pathophysiology using improved detection and characterization methods to elucidate the roles of EVs in inflammatory conditions.
Innate Immune Activation Through Nalp3 Inflammasome Sensing of Asbestos and Silica
The inhalation of airborne pollutants, such as asbestos or silica, is linked to inflammation of the lung, fibrosis, and lung cancer. How the presence of pathogenic dust is recognized and how chronic inflammatory diseases are triggered are poorly understood. Here, we show that asbestos and silica are sensed by the Nalp3 inflammasome, whose subsequent activation leads to interleukin-1β secretion. Inflammasome activation is triggered by reactive oxygen species, which are generated by a NADPH oxidase upon particle phagocytosis. (NADPH is the reduced form of nicotinamide adenine dinucleotide phosphate.) In a model of asbestos inhalation, Nalp3 –/– mice showed diminished recruitment of inflammatory cells to the lungs, paralleled by lower cytokine production. Our findings implicate the Nalp3 inflammasome in particulate matter–related pulmonary diseases and support its role as a major proinflammatory “danger” receptor.
From the Cradle to the Grave: The Role of Macrophages in Erythropoiesis and Erythrophagocytosis
Erythropoiesis is a highly regulated process where sequential events ensure the proper differentiation of hematopoietic stem cells into, ultimately, red blood cells (RBCs). Macrophages in the bone marrow play an important role in hematopoiesis by providing signals that induce differentiation and proliferation of the earliest committed erythroid progenitors. Subsequent differentiation toward the erythroblast stage is accompanied by the formation of so-called erythroblastic islands where a central macrophage provides further cues to induce erythroblast differentiation, expansion, and hemoglobinization. Finally, erythroblasts extrude their nuclei that are phagocytosed by macrophages whereas the reticulocytes are released into the circulation. While in circulation, RBCs slowly accumulate damage that is repaired by macrophages of the spleen. Finally, after 120 days of circulation, senescent RBCs are removed from the circulation by splenic and liver macrophages. Macrophages are thus important for RBCs throughout their lifespan. Finally, in a range of diseases, the delicate interplay between macrophages and both developing and mature RBCs is disturbed. Here, we review the current knowledge on the contribution of macrophages to erythropoiesis and erythrophagocytosis in health and disease.
S100A8/A9 Is a Marker for the Release of Neutrophil Extracellular Traps and Induces Neutrophil Activation
Neutrophils are the most abundant innate immune cells in the circulation and they are the first cells recruited to sites of infection or inflammation. Almost half of the intracellular protein content in neutrophils consists of S100A8 and S100A9, though there has been controversy about their actual localization. Once released extracellularly, these proteins are thought to act as damage-associated molecular patterns (DAMPs), though their mechanism of action is not well understood. These S100 proteins mainly form heterodimers (S100A8/A9, also known as calprotectin) and this heterocomplex is recognized as a useful biomarker for several inflammatory diseases. We observed that S100A8/A9 is highly present in the cytoplasmic fraction of neutrophils and is not part of the granule content. Furthermore, we found that S100A8/A9 was not released in parallel with granular content but upon the formation of neutrophil extracellular traps (NETs). Accordingly, neutrophils of patients with chronic granulomatous disease, who are deficient in phorbol 12-myristate 13-acetate (PMA)-induced NETosis, did not release S100A8/A9 upon PMA stimulation. Moreover, we purified S100A8/A9 from the cytoplasmic fraction of neutrophils and found that S100A8/A9 could induce neutrophil activation, including adhesion and CD11b upregulation, indicating that this DAMP might amplify neutrophil activation.
FcγRIIIb Restricts Antibody-Dependent Destruction of Cancer Cells by Human Neutrophils
The function of the low-affinity IgG-receptor FcγRIIIb (CD16b), which is uniquely and abundantly expressed on human granulocytes, is not clear. Unlike the other Fcγ receptors (FcγR), it is a glycophosphatidyl inositol (GPI) -anchored molecule and does not have intracellular signaling motifs. Nevertheless, FcγRIIIb can cooperate with other FcγR to promote phagocytosis of antibody-opsonized microbes by human neutrophils. Here we have investigated the role of FcγRIIIb during antibody-dependent cellular cytotoxicity (ADCC) by neutrophils toward solid cancer cells coated with either trastuzumab (anti-HER2) or cetuximab (anti-EGFR). Inhibiting FcγRIIIb using CD16-F(ab') blocking antibodies resulted in substantially enhanced ADCC. ADCC was completely dependent on FcγRIIa (CD32a) and the enhanced ADCC seen after FcγRIIIb blockade therefore suggested that FcγRIIIb was competing with FcγRIIa for IgG on the opsonized target cells. Interestingly, the function of neutrophil FcγRIIIb as a decoy receptor was further supported by using neutrophils from individuals with different gene copy numbers of causing different levels of surface FcγRIIIb expression. Individuals with one copy of showed higher levels of ADCC compared to those with two or more copies. Finally, we show that therapeutic antibodies intended to improve FcγRIIIa (CD16a)-dependent natural killer (NK) cell ADCC due to the lack of fucosylation on the N-linked glycan at position N297 of the IgG heavy chain Fc-region, show decreased ADCC as compared to regularly fucosylated antibodies. Together, these data confirm FcγRIIIb as a negative regulator of neutrophil ADCC toward tumor cells and a potential target for enhancing tumor cell destruction by neutrophils.
Transfusion practice in the non-bleeding critically ill: an international online survey—the TRACE survey
Background Over the last decade, multiple large randomized controlled trials have studied alternative transfusion strategies in critically ill patients, demonstrating the safety of restrictive transfusion strategies. Due to the lack of international guidelines specific for the intensive care unit (ICU), we hypothesized that a large heterogeneity in transfusion practice in this patient population exists. The aims of this study were to describe the current transfusion practices and identify the knowledge gaps. Methods An online, anonymous, worldwide survey among ICU physicians was performed evaluating red blood cell, platelet and plasma transfusion practices. Furthermore, the presence of a hospital- or ICU-specific transfusion guideline was asked. Only completed surveys were analysed. Results Nine hundred forty-seven respondents filled in the survey of which 725 could be analysed. Hospital transfusion protocol available in their ICU was reported by 53% of the respondents. Only 29% of respondents used an ICU-specific transfusion guideline. The reported haemoglobin (Hb) threshold for the general ICU population was 7 g/dL (7–7). The highest reported variation in transfusion threshold was in patients on extracorporeal membrane oxygenation or with brain injury (8 g/dL (7.0–9.0)). Platelets were transfused at a median count of 20 × 10 9 cells/L IQR (10–25) in asymptomatic patients, but at a higher count prior to invasive procedures ( p  < 0.001). In patients with an international normalized ratio (INR) > 3, 43% and 57% of the respondents would consider plasma transfusion without any upcoming procedures or prior to a planned invasive procedure, respectively. Finally, doctors with base specialty in anaesthesiology transfused critically ill patients more liberally compared to internal medicine physicians. Conclusion Red blood cell transfusion practice for the general ICU population is restrictive, while for different subpopulations, higher Hb thresholds are applied. Furthermore, practice in plasma and platelet transfusion is heterogeneous, and local transfusion guidelines are lacking in the majority of the ICUs.
Tissue-specific expression of IgG receptors by human macrophages ex vivo
Recently it was discovered that tissue-resident macrophages derive from embryonic precursors, not only from peripheral blood monocytes, and maintain themselves by self-renewal. Most in-vitro studies on macrophage biology make use of in-vitro cultured human monocyte-derived macrophages. Phagocytosis of IgG-opsonized particles by tissue-resident macrophages takes place via interaction with IgG receptors, the Fc-gamma receptors (FcγRs). We investigated the FcγR expression on macrophages both in-vivo and ex-vivo from different human tissues. Upon isolation of primary human macrophages from bone marrow, spleen, liver and lung, we observed that macrophages from all studied tissues expressed high levels of FcγRIII, which was in direct contrast with the low expression on blood monocyte-derived macrophages. Expression levels of FcγRI were highly variable, with bone marrow macrophages showing the lowest and alveolar macrophages the highest expression. Kupffer cells in the liver were the only tissue-resident macrophages that expressed the inhibitory IgG receptor, FcγRIIB. This inhibitory receptor was also found to be expressed by sinusoidal endothelial cells in the liver. In sum, our immunofluorescence data combined with ex-vivo stainings of isolated macrophages indicated that tissue-resident macrophages are remarkably unique and different from monocyte-derived macrophages in their phenotypic expression of IgG receptors. Tissue macrophages show distinct tissue-specific FcγR expression patterns.
Transfusion of female blood in a rat model is associated with red blood cells entrapment in organs
Transfusion of red blood cells (RBCs) has been associated with adverse outcomes. Mechanisms may be related to donor sex and biological age of RBC. This study hypothesized that receipt of female blood is associated with decreased post-transfusion recovery (PTR) and a concomitant increased organ entrapment in rats, related to young age of donor RBCs. Donor rats underwent bloodletting to stimulate production of new, young RBCs, followed by Percoll fractionation for further enrichment of young RBCs based on their low density. Control donors did not undergo these procedures. Male rats received either a (biotinylated) standard RBC product or a product enriched for young RBCs, derived from either male or female donors. Controls received saline. Organs and blood samples were harvested after 24 hours. This study found no difference in PTR between groups, although only the group receiving young RBCs from females failed to reach a PTR of 75%. Receipt of both standard RBCs and young RBCs from females was associated with increased entrapment of donor RBCs in the lung, liver, and spleen compared to receiving blood from male donors. Soluble ICAM-1 and markers of hemolysis were higher in recipients of female blood compared to control. In conclusion, transfusing RBCs from female donors, but not from male donors, is associated with trapping of donor RBCs in organs, accompanied by endothelial activation and hemolysis.
SIGLEC-5/14 Inhibits CD11b/CD18 Integrin Activation and Neutrophil-Mediated Tumor Cell Cytotoxicity
Since the successful introduction of checkpoint inhibitors targeting the adaptive immune system, monoclonal antibodies inhibiting CD47-SIRPα interaction have shown promise in enhancing anti-tumor treatment efficacy. Apart from SIRPα, neutrophils express a broad repertoire of inhibitory receptors, including several members of the sialic acid-binding receptor (SIGLEC) family. Here, we demonstrate that interaction between tumor cell-expressed sialic acids and SIGLEC-5/14 on neutrophils inhibits antibody-dependent cellular cytotoxicity (ADCC). We observed that conjugate formation and trogocytosis, both essential processes for neutrophil ADCC, were limited by the sialic acid-SIGLEC-5/14 interaction. During neutrophil-tumor cell conjugate formation, we found that inhibition of the interaction between tumor-expressed sialic acids and SIGLEC-5/14 on neutrophils increased the CD11b/CD18 high affinity conformation. By dynamic acoustic force measurement, the binding between tumor cells and neutrophils was assessed. The interaction between SIGLEC-5/14 and the sialic acids was shown to inhibit the CD11b/CD18-regulated binding between neutrophils and antibody-opsonized tumor cells. Moreover, the interaction between sialic acids and SIGLEC-5/14-consequently hindered trogocytosis and tumor cell killing. In summary, our results provide evidence that the sialic acid-SIGLEC-5/14 interaction is an additional target for innate checkpoint blockade in the tumor microenvironment.
Transfusion of female blood in a rat model is associated with red blood cells entrapment in organs
Transfusion of red blood cells (RBCs) has been associated with adverse outcomes. Mechanisms may be related to donor sex and biological age of RBC. This study hypothesized that receipt of female blood is associated with decreased post-transfusion recovery (PTR) and a concomitant increased organ entrapment in rats, related to young age of donor RBCs. Donor rats underwent bloodletting to stimulate production of new, young RBCs, followed by Percoll fractionation for further enrichment of young RBCs based on their low density. Control donors did not undergo these procedures. Male rats received either a (biotinylated) standard RBC product or a product enriched for young RBCs, derived from either male or female donors. Controls received saline. Organs and blood samples were harvested after 24 hours. This study found no difference in PTR between groups, although only the group receiving young RBCs from females failed to reach a PTR of 75%. Receipt of both standard RBCs and young RBCs from females was associated with increased entrapment of donor RBCs in the lung, liver, and spleen compared to receiving blood from male donors. Soluble ICAM-1 and markers of hemolysis were higher in recipients of female blood compared to control. In conclusion, transfusing RBCs from female donors, but not from male donors, is associated with trapping of donor RBCs in organs, accompanied by endothelial activation and hemolysis.