Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
LanguageLanguage
-
SubjectSubject
-
Item TypeItem Type
-
DisciplineDiscipline
-
YearFrom:-To:
-
More FiltersMore FiltersIs Peer Reviewed
Done
Filters
Reset
64
result(s) for
"Van Eijk, Hans"
Sort by:
d-amino Acids in Health and Disease: A Focus on Cancer
by
Bastings, Jacco J.A.J.
,
van Eijk, Hans M.
,
Olde Damink, Steven W.
in
absorption barrier
,
Amino acids
,
Amino Acids - physiology
2019
d-amino acids, the enantiomeric counterparts of l-amino acids, were long considered to be non-functional or not even present in living organisms. Nowadays, d-amino acids are acknowledged to play important roles in numerous physiological processes in the human body. The most commonly studied link between d-amino acids and human physiology concerns the contribution of d-serine and d-aspartate to neurotransmission. These d-amino acids and several others have also been implicated in regulating innate immunity and gut barrier function. Importantly, the presence of certain d-amino acids in the human body has been linked to several diseases including schizophrenia, amyotrophic lateral sclerosis, and age-related disorders such as cataract and atherosclerosis. Furthermore, increasing evidence supports a role for d-amino acids in the development, pathophysiology, and treatment of cancer. In this review, we aim to provide an overview of the various sources of d-amino acids, their metabolism, as well as their contribution to physiological processes and diseases in man, with a focus on cancer.
Journal Article
Intestinal permeability before and after albendazole treatment in low and high socioeconomic status schoolchildren in Makassar, Indonesia
by
Hamid, Firdaus
,
Yazdanbakhsh, Maria
,
Wahyuni, Sitti
in
692/308/174
,
692/4020/2741/2135
,
692/4020/2741/520
2022
Intestinal helminths are highly prevalent in low-SES children and could contribute to poor health outcomes either directly or via alteration of the gut microbiome and gut barrier function. We analysed parasitic infections and gut microbiota composition in 325 children attending high- and low-SES schools in Makassar, Indonesia before and after albendazole treatment. Lactulose/Mannitol Ratio (LMR, a marker of gut permeability); I-FABP (a surrogate marker of intestinal damage) as well as inflammatory markers (LBP) were measured. Helminth infections were highly prevalent (65.6%) in low-SES children. LMR and I-FABP levels were higher in low-SES children (geomean (95%CI): 4.03 (3.67–4.42) vs. 3.22 (2.91–3.57);
p
. adj < 0.001; and 1.57 (1.42–1.74) vs. 1.25 (1.13–1.38); p. adj = 0.02, respectively) while LBP levels were lower compared to the high-SES (19.39 (17.09–22.01) vs. 22.74 (20.07–26.12); p.adj = 0.01). Albendazole reduced helminth infections in low-SES and also decreased LMR with 11% reduction but only in helminth-uninfected children (estimated treatment effect: 0.89; p.adj = 0.01). Following treatment, I-FABP decreased in high- (0.91, p.adj < 0.001) but increased (1.12, p.adj = 0.004) in low-SES children. Albendazole did not alter the levels of LBP. Microbiota analysis showed no contribution from specific bacterial-taxa to the changes observed. Intestinal permeability and epithelial damage are higher while peripheral blood inflammatory marker is lower in children of low-SES in Indonesia. Furthermore, treatment decreased LMR in helminth-uninfected only.
Journal Article
Microcirculatory Function during Endotoxemia—A Functional Citrulline-Arginine-NO Pathway and NOS3 Complex Is Essential to Maintain the Microcirculation
by
Meesters, Dennis M.
,
van Eijk, Hans M. H.
,
Briedé, Jacob J.
in
Animals
,
Arginine - metabolism
,
Citrulline - administration & dosage
2021
Competition for the amino acid arginine by endothelial nitric-oxide synthase (NOS3) and (pro-)inflammatory NO-synthase (NOS2) during endotoxemia appears essential in the derangement of the microcirculatory flow. This study investigated the role of NOS2 and NOS3 combined with/without citrulline supplementation on the NO-production and microcirculation during endotoxemia. Wildtype (C57BL6/N background; control; n = 36), Nos2-deficient, (n = 40), Nos3-deficient (n = 39) and Nos2/Nos3-deficient mice (n = 42) received a continuous intravenous LPS infusion alone (200 μg total, 18 h) or combined with L-citrulline (37.5 mg, last 6 h). The intestinal microcirculatory flow was measured by side-stream dark field (SDF)-imaging. The jejunal intracellular NO production was quantified by in vivo NO-spin trapping combined with electron spin-resonance (ESR) spectrometry. Amino-acid concentrations were measured by high-performance liquid chromatography (HPLC). LPS infusion decreased plasma arginine concentration in control and Nos3−/− compared to Nos2−/− mice. Jejunal NO production and the microcirculation were significantly decreased in control and Nos2−/− mice after LPS infusion. No beneficial effects of L-citrulline supplementation on microcirculatory flow were found in Nos3−/− or Nos2−/−/Nos3−/− mice. This study confirms that L-citrulline supplementation enhances de novo arginine synthesis and NO production in mice during endotoxemia with a functional NOS3-enzyme (control and Nos2−/− mice), as this beneficial effect was absent in Nos3−/− or Nos2−/−/Nos3−/− mice.
Journal Article
Arginine Availability in Reamed Intramedullary Aspirate as Predictor of Outcome in Nonunion Healing
by
Meesters, Dennis M.
,
van Eijk, Hans M. H.
,
Hofman, Martijn
in
Amino acids
,
Arginase
,
Arginine
2022
Fracture healing and nonunion development are influenced by a range of biological factors. Adequate amino acid concentrations, especially arginine, are known to be important during normal bone healing. We hypothesize that bone arginine availability in autologous bone marrow grafting, when using the reamer-irrigator-aspirator (RIA) procedure, is a marker of bone healing capacity in patients treated for nonunion. Seventeen patients treated for atrophic long bone nonunion by autologous bone grafting by the RIA procedure were included and divided into two groups, successful treatment of nonunion and unsuccessful, and were compared with control patients after normal fracture healing. Reamed bone marrow aspirate from a site distant to the nonunion was obtained and the amino acids and enzymes relevant to arginine metabolism were measured. Arginine and ornithine concentrations were higher in patients with successful bone healing after RIA in comparison with unsuccessful healing. Ornithine concentrations and arginase-1 expression were lower in all nonunion patients compared to control patients, while citrulline concentrations were increased. Nitric oxide synthase 2 (Nos2) expression was significantly increased in all RIA-treated patients, and higher in patients with a successful outcome when compared with an unsuccessful outcome. The results indicate an influence of the arginine–nitric oxide metabolism in collected bone marrow, on the outcome of nonunion treatment, with indications for a prolonged inflammatory response in patients with unsuccessful bone grafting therapy. The determination of arginine concentrations and Nos2 expression could be used as a predictor for the successful treatment of autologous bone grafting in nonunion treatment.
Journal Article
Citrulline Supplementation Improves Organ Perfusion and Arginine Availability under Conditions with Enhanced Arginase Activity
by
Poeze, Martijn
,
Von Wintersdorff, Christian
,
Brouckaert, Peter
in
Animals
,
Arginase - metabolism
,
Arginase - pharmacology
2015
Enhanced arginase-induced arginine consumption is believed to play a key role in the pathogenesis of sickle cell disease-induced end organ failure. Enhancement of arginine availability with l-arginine supplementation exhibited less consistent results; however, l-citrulline, the precursor of l-arginine, may be a promising alternative. In this study, we determined the effects of l-citrulline compared to l-arginine supplementation on arginine-nitric oxide (NO) metabolism, arginine availability and microcirculation in a murine model with acutely-enhanced arginase activity. The effects were measured in six groups of mice (n = 8 each) injected intraperitoneally with sterile saline or arginase (1000 IE/mouse) with or without being separately injected with l-citrulline or l-arginine 1 h prior to assessment of the microcirculation with side stream dark-field (SDF)-imaging or in vivo NO-production with electron spin resonance (ESR) spectroscopy. Arginase injection caused a decrease in plasma and tissue arginine concentrations. l-arginine and l-citrulline supplementation both enhanced plasma and tissue arginine concentrations in arginase-injected mice. However, only the citrulline supplementation increased NO production and improved microcirculatory flow in arginase-injected mice. In conclusion, the present study provides for the first time in vivo experimental evidence that l-citrulline, and not l-arginine supplementation, improves the end organ microcirculation during conditions with acute arginase-induced arginine deficiency by increasing the NO concentration in tissues.
Journal Article
Circulating but not faecal short-chain fatty acids are related to insulin sensitivity, lipolysis and GLP-1 concentrations in humans
by
Holst, Jens J.
,
Jocken, Johan W. E.
,
Reijnders, Dorien
in
692/163/2743/2037
,
692/4020/198
,
82/16
2019
Microbial-derived short-chain fatty acids (SCFA) acetate, propionate and butyrate may provide a link between gut microbiota and whole-body insulin sensitivity (IS). In this cross-sectional study (160 participants, 64% male, BMI: 19.2–41.0 kg/m
2
, normal or impaired glucose metabolism), associations between SCFA (faecal and fasting circulating) and circulating metabolites, substrate oxidation and IS were investigated. In a subgroup (n = 93), IS was determined using a hyperinsulinemic-euglycemic clamp. Data were analyzed using multiple linear regression analysis adjusted for sex, age and BMI. Fasting circulating acetate, propionate and butyrate concentrations were positively associated with fasting GLP-1 concentrations. Additionally, circulating SCFA were negatively related to whole-body lipolysis (glycerol), triacylglycerols and free fatty acids levels (standardized (std) β adjusted (adj) −0.190, P = 0.023; std β adj −0.202, P = 0.010; std β adj −0.306, P = 0.001, respectively). Circulating acetate and propionate were, respectively, negatively and positively correlated with IS (M-value: std β adj −0.294, P < 0.001; std β adj 0.161, P = 0.033, respectively). We show that circulating rather than faecal SCFA were associated with GLP-1 concentrations, whole-body lipolysis and peripheral IS in humans. Therefore, circulating SCFA are more directly linked to metabolic health, which indicates the need to measure circulating SCFA in human prebiotic/probiotic intervention studies as a biomarker/mediator of effects on host metabolism.
Journal Article
Mass spectrometry imaging of L-ring-13C6-labeled phenylalanine and tyrosine kinetics in non-small cell lung carcinoma
by
van Loon, Luc J. C.
,
van Eijk, Hans M. H.
,
Soons, Zita
in
Amino acids
,
Biomedical and Life Sciences
,
Biomedicine
2021
Background
Metabolic reprogramming is a common phenomenon in tumorigenesis and tumor progression. Amino acids are important mediators in cancer metabolism, and their kinetics in tumor tissue are far from being understood completely. Mass spectrometry imaging is capable to spatiotemporally trace important endogenous metabolites in biological tissue specimens. In this research, we studied L-[ring-
13
C
6
]-labeled phenylalanine and tyrosine kinetics in a human non-small cell lung carcinoma (NSCLC) xenografted mouse model using matrix-assisted laser desorption/ionization Fourier-transform ion cyclotron resonance mass spectrometry imaging (MALDI-FTICR-MSI).
Methods
We investigated the L-[ring-
13
C
6
]-Phenylalanine (
13
C
6
-Phe) and L-[ring-
13
C
6
]-Tyrosine (
13
C
6
-Tyr) kinetics at 10 min (
n
= 4), 30 min (
n
= 3), and 60 min (
n
= 4) after tracer injection and sham-treated group (
n
= 3) at 10 min in mouse-xenograft lung tumor tissues by MALDI-FTICR-MSI.
Results
The dynamic changes in the spatial distributions of 19 out of 20 standard amino acids are observed in the tumor tissue. The highest abundance of
13
C
6
-Phe was detected in tumor tissue at 10 min after tracer injection and decreased progressively over time. The overall enrichment of
13
C
6
-Tyr showed a delayed temporal trend compared to
13
C
6
-Phe in tumor caused by the Phe-to-Tyr conversion process. Specifically,
13
C
6
-Phe and
13
C
6
-Tyr showed higher abundances in viable tumor regions compared to non-viable regions.
Conclusions
We demonstrated the spatiotemporal intra-tumoral distribution of the essential aromatic amino acid
13
C
6
-Phe and its de-novo synthesized metabolite
13
C
6
-Tyr by MALDI-FTICR-MSI. Our results explore for the first time local phenylalanine metabolism in the context of cancer tissue morphology. This opens a new way to understand amino acid metabolism within the tumor and its microenvironment.
Journal Article
Distal versus proximal intestinal short-chain fatty acid release in man
by
van Eijk, Hans MH
,
Dejong, Cornelis HC
,
Rensen, Sander S
in
Adipose tissue
,
Adipose tissue (brown)
,
Appetite
2019
Correspondence to Sander S Rensen, Department of Surgery, Maastricht University Medical Centre, PO Box 616, 6200 MD, Maastricht, The Netherlands; s.rensen@maastrichtuniversity.nl Several recent studies published in Gut highlight the potential of prebiotics and short-chain fatty acids (SCFAs) to improve obesity and its associated metabolic disorders. Li et al3 reported that butyrate administration reduced appetite and activated brown adipose tissue in mice, and Chambers and colleagues4 showed that targeted propionate delivery to the human colon reduced energy intake and body weight gain. [...]the number of bacteria is highest in the colon, and gut microbiota composition and activity differ substantially between the proximal and distal intestines.6 However, SCFA concentrations are higher in the proximal intestinal lumen.7 Third, apical and basolateral epithelial cell uptake and transport of SCFA may differ between intestinal segments.
Journal Article
Polyethylene glycol versus dual sugar assay for gastrointestinal permeability analysis: is it time to choose?
2012
Increased intestinal permeability is an important measure of disease activity and prognosis. Currently, many permeability tests are available and no consensus has been reached as to which test is most suitable. The aim of this study was to compare urinary probe excretion and accuracy of a polyethylene glycol (PEG) assay and dual sugar assay in a double-blinded crossover study to evaluate probe excretion and the accuracy of both tests.
Gastrointestinal permeability was measured in nine volunteers using PEG 400, PEG 1500, and PEG 3350 or lactulose-rhamnose. On 4 separate days, permeability was analyzed after oral intake of placebo or indomethacin, a drug known to increase intestinal permeability. Plasma intestinal fatty acid binding protein and calprotectin levels were determined to verify compromised intestinal integrity after indomethacin consumption. Urinary samples were collected at baseline, hourly up to 5 hours after probe intake, and between 5 and 24 hours. Urinary excretion of PEG and sugars was determined using high-pressure liquid chromatography-evaporative light scattering detection and liquid chromatography-mass spectrometry, respectively.
Intake of indomethacin increased plasma intestinal fatty acid-binding protein and calprotectin levels, reflecting loss of intestinal integrity and inflammation. In this state of indomethacin-induced gastrointestinal compromise, urinary excretion of the three PEG probes and lactulose increased compared with placebo. Urinary PEG 400 excretion, the PEG 3350/PEG 400 ratio, and the lactulose/rhamnose ratio could accurately detect indomethacin-induced increases in gastrointestinal permeability, especially within 2 hours of probe intake.
Hourly urinary excretion and diagnostic accuracy of PEG and sugar probes show high concordance for detection of indomethacin-induced increases in gastrointestinal permeability. This comparative study improves our knowledge of permeability analysis in man by providing a clear overview of both tests and demonstrates equivalent performance in the current setting.
Journal Article
Intestinal barrier function in morbid obesity: results of a prospective study on the effect of sleeve gastrectomy
2020
BackgroundObesity has been associated with impaired intestinal barrier function. It is not known whether bariatric surgery leads to changes in intestinal barrier function. We hypothesized that obesity is associated with disturbances in gastrointestinal barrier function, and that after bariatric surgery barrier function will improve.MethodsProspective single center study in which we assessed segmental gut permeability by urinary recovery of a multisugar drink in 27 morbidly obese (BMI 43.3 ± 1.1 kg/m2) and 27 age and gender matched lean subjects (BMI 22.9 ± 0.43 kg/m2). Fecal calprotectin, SCFAs, plasma cytokines, and hsCRP were assessed as inflammatory and metabolic markers. Comparisons: (a) morbidly obese subjects vs. controls and (b) 2 and 6 months postsleeve vs. presleeve gastrectomy (n = 14). In another group of 10 morbidly obese and 11 matched lean subjects colonic and ileal biopsies were obtained in order to measure gene transcription of tight junction proteins.ResultsGastroduodenal permeability (urinary sucrose recovery) was significantly increased in obese vs. lean controls (p < 0.05). Small intestinal and colonic permeability (urinary recovery of lactulose/L-rhamnose and sucralose/erythritol, respectively) in obese subjects were not significantly different from controls. Morbidly obese subjects had a proinflammatory systemic and intestinal profile compared with lean subjects. After sleeve gastrectomy BMI decreased significantly (p < 0.001). Postsleeve gastroduodenal permeability normalized to values that do not differ from lean controls.ConclusionsGastroduodenal permeability, but not small intestinal or colonic permeability, is significantly increased in morbidly obese patients. After sleeve gastrectomy, gastroduodenal permeability normalized to values in the range of lean controls. Thus, the proximal gastrointestinal barrier is compromised in morbid obesity and is associated with a proinflammatory intestinal and systemic profile.
Journal Article