Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
8 result(s) for "Vanessa, Zurli"
Sort by:
Signals Controlling Lytic Granule Polarization at the Cytotoxic Immune Synapse
Cytotoxic immunity relies on specialized effector T cells, the cytotoxic T cells, which are endowed with specialized cytolytic machinery that permits them to induce death of their targets. Upon recognition of a target cell, cytotoxic T cells form a lytic immune synapse and by docking the microtubule-organizing center at the synaptic membrane get prepared to deliver a lethal hit of enzymes contained in lytic granules. New insights suggest that the directionality of lytic granule trafficking along the microtubules represents a fine means to tune the functional outcome of the encounter between a T cell and its target. Thus, mechanisms regulating the directionality of granule transport may have a major impact in settings characterized by evasion from the cytotoxic response, such as chronic infection and cancer. Here, we review our current knowledge on the signaling pathways implicated in the polarized trafficking at the immune synapse of cytotoxic T cells, complementing it with information on the regulation of this process in natural killer cells. Furthermore, we highlight some of the parameters which we consider critical in studying the polarized trafficking of lytic granules, including the use of freshly isolated cytotoxic T cells, and discuss some of the major open questions.
The Neisseria meningitidis ADP-Ribosyltransferase NarE Enters Human Epithelial Cells and Disrupts Epithelial Monolayer Integrity
Many pathogenic bacteria utilize ADP-ribosylating toxins to modify and impair essential functions of eukaryotic cells. It has been previously reported that Neisseria meningitidis possesses an ADP-ribosyltransferase enzyme, NarE, retaining the capacity to hydrolyse NAD and to transfer ADP-ribose moiety to arginine residues in target acceptor proteins. Here we show that upon internalization into human epithelial cells, NarE gains access to the cytoplasm and, through its ADP-ribosylating activity, targets host cell proteins. Notably, we observed that these events trigger the disruption of the epithelial monolayer integrity and the activation of the apoptotic pathway. Overall, our findings provide, for the first time, evidence for a biological activity of NarE on host cells, suggesting its possible involvement in Neisseria pathogenesis.
Positive Contribution of Adjuvanted Influenza Vaccines to the Resolution of Bacterial Superinfections
Background. Most preclinical studies assess vaccine effectiveness in single-pathogen infection models. This is unrealistic given that humans are continuously exposed to different commensals and pathogens in sequential and mixed infections. Accordingly, complications from secondary bacterial infection are a leading cause of influenza-associated morbidity and mortality. New vaccination strategies are needed to control infections on simultaneous fronts. Methods. We compared different anti-influenza vaccines for their protective potential in a model of viral infection with bacterial superinfection. Mice were immunized with H1N1/A/California/7/2009 subunit vaccines, formulated with different adjuvants inducing either T-helper type 1 (Th1) (MF59 plus CpG)–, Th1/2 (MF59)–, or Th17 (LTK63)–prone immune responses and were sequentially challenged with mouse-adapted influenza virus H1N1/A/Puerto Rico/8/1934 and Staphylococcus aureus USA300, a clonotype emerging as a leading contributor in postinfluenza pneumonia in humans. Results. Unadjuvanted vaccine controlled single viral infection, yet mice had considerable morbidity from viral disease and bacterial superinfection. In contrast, all adjuvanted vaccines efficiently protected mice in both conditions. Interestingly, the Th1-inducing formulation was superior to Th1/2 or Th17 inducers. Conclusions. Our studies should help us better understand how differential immunity to influenza skews immune responses toward coinfecting bacteria and discover novel modes to prevent bacterial superinfections in the lungs of persons with influenza.
The Neisseria meningitidis ADP-Ribosyltransferase NarE Enters Human Epithelial Cells and Disrupts Epithelial Monolayer Integrity: e0127614
Many pathogenic bacteria utilize ADP-ribosylating toxins to modify and impair essential functions of eukaryotic cells. It has been previously reported that Neisseria meningitidis possesses an ADP-ribosyltransferase enzyme, NarE, retaining the capacity to hydrolyse NAD and to transfer ADP-ribose moiety to arginine residues in target acceptor proteins. Here we show that upon internalization into human epithelial cells, NarE gains access to the cytoplasm and, through its ADP-ribosylating activity, targets host cell proteins. Notably, we observed that these events trigger the disruption of the epithelial monolayer integrity and the activation of the apoptotic pathway. Overall, our findings provide, for the first time, evidence for a biological activity of NarE on host cells, suggesting its possible involvement in Neisseria pathogenesis.
Phosphoproteomics of CD2 signaling reveals an AMPK-dependent regulation of lytic granule polarization in cytotoxic T cells
Summary The in-depth analysis of costimulatory signaling enhancing the activity of cytotoxic T cells (CTLs) represents a major approach towards immunotherapy development. Here we report that CD2 costimulation plays a critical role in killing by freshly isolated human CTLs, which represent a challenging but valuable study model to gain insight into CTL biology. We show that CD2 triggering critically aids signaling by the T cell receptor in the formation of functional immune synapses by promoting the polarization of lytic granules towards the microtubule-organizing center (MTOC). To gain insight into the underlying elusive mechanism, we explored the CD2 signaling network by phosphoproteomics, which revealed 616 CD2-regulated phosphorylation events in 373 proteins implicated in the regulation of vesicular trafficking, cytoskeleton organization, autophagy and metabolism. Strikingly, signaling by the master metabolic regulator AMP-activated protein kinase (AMPK) represents a functionally critical node of the CD2 network which regulates granule polarization towards the MTOC in CTLs. Granule trafficking is driven by active AMPK enriched on adjacent lysosomes, illustrating a novel signaling cross-talk between vesicular compartments in CTLs. Our results thus establish CD2 signaling as key for regulating cytotoxic killing and granule polarization in freshly isolated CTLs and strengthens the rationale to choose CD2 and AMPK as therapeutic targets to boost CTL activity.