Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
8 result(s) for "Vanheusden, Alain"
Sort by:
Enhancement of Fluoride Retention in Human Enamel Using Low-Energy Blue Diode Laser (445 nm): An Ex Vivo Study
Aim: This ex vivo study aimed to evaluate the effect of low-energy 445 nm diode laser irradiation on permanent fluoride retention in human enamel. Materials and Methods: Eighty caries-free extracted permanent human teeth were used to prepare 480 enamel discs (2 × 2 mm). Baseline fluoride content in untreated enamel specimens (control group E) was measured using particle-induced gamma-ray emission (PIGE). All specimens then received a topical application of acidulated phosphate fluoride for 5 min, followed by rinsing with double-distilled water for 1 min. Fluoride quantification was subsequently repeated. Specimens were randomly allocated into two groups: fluoridated only (EF; n = 240) and fluoridated plus laser-treated (EFL; n = 240). Each group was further subdivided based on storage conditions: either in air or in double-distilled water at 36 °C for 7 days. Laser irradiation was performed using a 445 nm diode laser in continuous-wave mode at 350 mW for 30 s, with a beam diameter of 10 mm, an energy density of 13.375 J/cm2, and a power density of 0.445 W/cm2. Results: At baseline, mean fluoride content across all specimens was 702.23 ± 201 ppm. Immediately after fluoridation, fluoride levels increased to 11,059 ± 386 ppm in the EF group and 10,842 ± 234 ppm in the EFL group, with no significant difference between groups. After 7 days of storage in air, fluoride retention decreased to 5714 ± 1162 ppm in EF and 5973 ± 861 ppm in EFL, again without significant difference. However, after 7 days of immersion in double-distilled water, the EF group exhibited complete loss of acquired fluoride, with values falling below baseline (337 ± 150 ppm). In contrast, the EFL group retained a substantial portion of the fluoride acquired during fluoridation (total 1533 ± 163 ppm), indicating that laser irradiation significantly prevented fluoride loss (p < 0.001). Conclusions: Low-energy 445 nm diode laser irradiation of fluoridated enamel significantly enhances fluoride retention under aqueous conditions simulating osmotic processes. Laser treatment preserved a substantial portion of fluoride acquired during fluoridation, whereas fluoridated but unlased enamel lost nearly all fluoride, with levels dropping below baseline. This approach may offer clinical benefits for improving enamel fluoride enrichment, thereby increasing resistance to acid challenge and reducing caries risk.
Microscopic and Crystallographic Analysis of Increased Acid Resistance of Melted Dental Enamel Using 445 nm Diode Laser: An Ex-Vivo Study
Background/Objectives: This study aimed to evaluate the efficacy of a 445 nm diode laser in enhancing enamel resistance to acid-induced demineralization and to investigate the associated compositional and structural modifications using scanning electron microscopy (SEM), electron spectroscopy for chemical analysis (ESCA), and X-ray diffraction (XRD) crystallographic analysis. Methods: A total of 126 extracted human teeth were used. A total of 135 (n = 135) enamel discs (4 × 4 mm) from 90 teeth were assigned to either a laser-irradiated group or an untreated control group for SEM, ESCA, and XRD analyses. Additionally, 24 mono-rooted teeth were used to measure pulp temperature changes during laser application. Laser irradiation was performed using a 445 nm diode laser with a pulse width of 200 ms, a repetition rate of 1 Hz, power of 1.25 W, an energy density of 800 J/cm2, a power density of 3980 W/cm2, and a 200 µm activated fiber. Following acid etching, SEM was conducted to assess microstructural and ionic alterations. The ESCA was used to evaluate the Ca/P ratio, and XRD analyses were performed on enamel powders to determine changes in phase composition and crystal lattice parameters. Results: The laser protocol demonstrated thermal safety, with minimal pulp chamber temperature elevation (0.05667 ± 0.04131 °C). SEM showed that laser-treated enamel had a smoother surface morphology and reduced acid-induced erosion compared with controls. Results of the ESCA revealed no significant difference in the Ca/P ratio between groups. XRD confirmed the presence of hydroxyapatite structure in laser-treated enamel and detected an additional diffraction peak corresponding to a pyrophosphate phase, potentially enhancing acid resistance. Results of the spectral analysis showed the absence of α-TCP and β-TCP phases and a reduction in the carbonate content in the laser group. Furthermore, a significant decrease in the a-axis lattice parameter suggested lattice compaction in laser-treated enamel. Conclusions: Irradiation with a 445 nm diode laser effectively enhances enamel resistance to acid demineralization. This improvement may be attributed to chemical modifications, particularly pyrophosphate phase formation, and structural changes including prism-less enamel formation, surface fusion, and decreased permeability. These findings provide novel insights into the mechanisms of laser-induced enhancement of acid resistance in enamel.
Absorption, Thermal Relaxation Time, and Beam Penetration Depth of Laser Wavelengths in Ex Vivo Porcine Gingival Tissues
Background/Objectives: The laser beam absorption and thermal relaxation time (TRT) in oral tissues are key to optimizing treatment parameters. The aim of this study is to (1) evaluate, in an ex vivo study, the percentage of attenuation and transmittance of each wavelength as a function of tissue thickness; (2) determine the global absorption coefficient, α, of pig gingival tissue for the most commonly used wavelengths in dentistry; (3) calculate the thermal relaxation time (TRT) of oral tissue for these wavelengths; and (4) determine their corresponding penetration depths. Methods: We measured the transmission of different laser wavelengths through pig oral gingival tissues (Mandibular labial gingiva). We placed each tissue sample between two glass slides with minimal light attenuation. The input and output powers were measured after irradiating the tissue at different specific wavelengths: 450 nm, 480 nm, 532 nm, 632 nm, 810 nm, 940 and 980 nm, 1064 nm, 1341, 2780 nm and 2940 nm. After calculating the transmittance values, we plotted transmittance curves for each wavelength. Using the Beer–Lambert law, we then calculated the absorption coefficient (α) of each wavelength in the oral gingival tissue. Absorption coefficients were then used to calculate the TRT and penetration depth for each wavelength. Results: Among the tested wavelengths, 810 nm exhibited the lowest absorption in ex vivo porcine gingival tissue (α = 9.60 cm−1). The 450 nm blue laser showed moderate absorption (α = 26.8 cm−1), while the Er:YAG laser at 2940 nm demonstrated the highest absorption (α = 144.8 cm−1). We ranked the wavelengths from most absorbed to least absorbed by porcine oral gingival mucosa as follows: 2940 nm > 2780 nm > 450 nm > 480 nm > 532 nm > 1341 nm > 632 nm > 940 nm > 980 nm > 1064 nm > 810 nm. Conclusions: Absorption and the TRT vary significantly across wavelengths. Erbium lasers are characterized by the highest absorption and minimal light penetration. Infrared diodes, particularly the 810 nm wavelength, showed the lowest absorption and deepest tissue penetration and exhibited the highest thermal relaxation time. The 480 nm laser demonstrated greater absorption by porcine gingival tissue compared to the 532 nm laser. These findings provide evidence-based guidance for wavelength selection in dental treatments and photobiomodulation, enabling improved precision, safety, and therapeutic efficacy in clinical practice.
Decontamination of Dental Implant Surfaces by the Er:YAG Laser Beam: A Comparative in Vitro Study of Various Protocols
Oral rehabilitation with dental implants has revolutionized the field of dentistry and has been proven to be an effective procedure. However, the incidence of peri-implantitis has become an emerging concern. The efficacy of the decontamination of the implant surface, by means of lasers, is still controversial. Previous studies have revealed a reduction in osteoblast adhesion to carbon-contaminated implant surfaces. This in-vitro study aimed to evaluate the decontamination of failed implants by assessing the carbon proportion, after irradiation by low-energy erbium yttrium-aluminum-garnet laser (Er:YAG) (Fotona; 2940 nm, Ljubljana, Slovenia) for a single and for multiple passages, until getting a surface, free of organic matters; to find the appropriate procedure for dental-implant surface-decontamination. Ninety implants were used. Thirty sterile implants were kept as a negative control. Thirty failed implants were irradiated by the Er:YAG laser, for a single passage, and the other thirty, for multiple passages. The parameters used in our experiments were an irradiation energy of 50 mJ, frequency of 30 Hz, and an energy density of 3.76 J/cm2. A sapphire tip, with a length of 8 mm, was used with concomitant water spray irrigation, under air 6 and water spray 4. Super short pulse mode (SSP) was of 50 μs; irradiation speed being 2 mm/s. We used energy-dispersive X-ray spectroscopy (EDX) to evaluate the carbon proportion on the surfaces of the sterile implants, the contaminated, and the lased implants, with one (LX1) and with three passages (LX3). Statistical analysis was performed by ANOVA. Results showed mean difference between the three groups (contaminated, LX1, and LX3) with p < 0.0001, as between LX1 and Group A (p < 0.0001), while the difference between LX3 and the control group was not statistically significant. The decontamination of the implant surfaces with a low-energy Er:YAG laser with three passages, appeared to be an encouraging approach.
Photobiomodulation Therapy vs. Corticosteroid for the Management of Erosive/Ulcerative and Painful Oral Lichen Planus. Assessment of Success Rate during One-Year Follow-Up: A Retrospective Study
Photobiomodulation (PBM) therapy is a promising approach for the management of inflammatory conditions and autoimmune lesions, such as oral lichen planus (OLP). The aim of this retrospective study was to assess the effectiveness of PBM in the management of painful and erosive/ulcerative OLP and to compare it with the standard of care that is the topical application of corticosteroids. 96 patients were included with erosive and painful OLP. 48 patients received PBM therapy and 48 received corticosteroids. Data was collected retrospectively on pain using the visual analogue scale; clinical aspects of lesions were assessed with the REU score, and the recurrence rate was noted. One session of PBM therapy with a helium-neon red light (635 nm) was carried out every 48 h for 6 weeks. Treatments were mainly made in contact mode, using a fiber with a diameter of 600 µm (0.6 mm). The output power of the laser beam was calibrated by a power meter. A delivered power of 0.1 W was used for 40 s in a continuous wave (CW), corresponding to a delivered energy of 4 J. The delivered energy density related to the fiber diameter was 1415 J/cm2. Each treated point was considered as 1 cm2 of diameter. PBM therapy within these parameters was carried out on each point until the totality of the lesion was covered, including the non-erosive OLP area. Furthermore, healthy mucosa within 5 mm of the lesion was also irradiated with the same conditions. This PBM treatment was performed during 6 consecutive weeks. The topical corticosteroid treatment consisted of cortisone application to cover the OLP 3 times/day for 6 weeks. Follow-up was made at 6 weeks and at 3, 6 and 12 months. After 6 weeks, both groups showed complete absence of pain, and a complete disappearance of ulcerative/erosive areas. No significant difference was found for both groups concerning the recurrence rate of erosive OLP during the follow-up period; values were 0% at 6 weeks for both groups and 79% and 87.5% for the corticosteroid and PBM group, respectively, at 12 months of follow-up. PBM is effective for managing OLP and is significantly similar to topical corticosteroids without any need for the use of medication and with no reported side effects.
Aesthetic Treatment Outcomes of Capillary Hemangioma, Venous Lake, and Venous Malformation of the Lip Using Different Surgical Procedures and Laser Wavelengths (Nd:YAG, Er,Cr:YSGG, CO2, and Diode 980 nm)
Different approaches with different clinical outcomes have been found in treating capillary hemangioma (CH), venous lake (VL), or venous malformations (VM) of the lips. This retrospective study aims to assess scar quality, recurrence rate, and patient satisfaction after different surgeries with different laser wavelengths. A total of 143 patients with CH or VM were included. Nd:YAG laser was used for 47 patients, diode 980 nm laser was used for 32 patients (treatments by transmucosal photo-thermo-coagulation), Er,Cr:YSSG laser was used for 12 patients (treatments by excision), and CO2 laser was used for 52 patients (treatments by photo-vaporization). The Manchester scar scale was used by practitioners to assess the scar quality. The recurrence rate and patients’ satisfaction were noted at different follow-ups during 12 months. Our retrospective study showed that laser-assisted aesthetic treatment of vascular lesions (CH, VL, and VM) of the lips can be considered effective regardless of the wavelength used (Er,Cr:YSGG, CO2, Nd:YAG, and diode 980 nm) or the treatment procedure (transmucosal photo-thermo-coagulation, photo-vaporization, and surgical excision). There was no significant difference in patient and practitioner satisfaction with aesthetic outcome at 6 months follow-up. Furthermore, the treatments of lip vascular lesions performed using Er,Cr:YSGG and CO2 lasers did not show any recurrence during the 12 months of follow-up, while recurrence rates of 11% ± 1.4% and 8% ± 0.9% were seen in the diode and Nd:YAG groups, respectively.
A new method using insert-based systems (IBS) to improve cell behavior study on flexible and rigid biomaterials
In vitro studies about biomaterials biological properties are essential screening tests. Yet cell cultures encounter difficulties related to cell retention on material surface or to the observation of both faces of permeable materials. The objective of the present study was to develop a reliable in vitro method to study cell behavior on rigid and flexible/permeable biomaterials elaborating two specific insert-based systems (IBS-R and IBS-F respectively). IBS-R was designed as a specific cylindrical polytetrafluoroethylene (PTFE) system to evaluate attachment, proliferation and morphology of human gingival fibroblasts (HGFs) on grade V titanium and lithium disilicate glass-ceramic discs characteristics of dental prostheses. The number of cells, their covering on discs and their morphology were determined from MTS assays and microscopic fluorescent images after 24, 48 and 72 h. IBS-F was developed as a two components system to study HGFs behavior on guided bone regeneration polyester membranes. The viability and the membrane barrier effect were evaluated by metabolic MTS assays and by scanning electron microscopy. IBS-R and IBS-F were shown to promote (1) easy and rapid handling; (2) cell retention on biomaterial surface; (3) accurate evaluation of the cellular proliferation, spreading and viability; (4) use of non-toxic material. Moreover IBS-F allowed the study of the cell migration through degradable membranes, with an access to both faces of the biomaterial and to the bottom of culture wells for medium changing.
Sustainable Education
In this chapter, the efforts and results for Education for Sustainable Development (research, education, campus greening…) are reported for two Higher Education Institutions in Flanders (PXL and UHasselt). All these initiatives deal with the involvement and behaviour of future generations 'decision-makers': (the realisation of new start-ups and of spin offs are also reported). So they are an essential contribution in the quadruple helix interaction towards a sustainable paradigm shift into the Post Fossil-Carbon Society.