Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
46 result(s) for "Velthoven, Peter van"
Sort by:
Significant radiative impact of volcanic aerosol in the lowermost stratosphere
Despite their potential to slow global warming, until recently, the radiative forcing associated with volcanic aerosols in the lowermost stratosphere (LMS) had not been considered. Here we study volcanic aerosol changes in the stratosphere using lidar measurements from the NASA CALIPSO satellite and aircraft measurements from the IAGOS-CARIBIC observatory. Between 2008 and 2012 volcanism frequently affected the Northern Hemisphere stratosphere aerosol loadings, whereas the Southern Hemisphere generally had loadings close to background conditions. We show that half of the global stratospheric aerosol optical depth following the Kasatochi, Sarychev and Nabro eruptions is attributable to LMS aerosol. On average, 30% of the global stratospheric aerosol optical depth originated in the LMS during the period 2008–2011. On the basis of the two independent, high-resolution measurement methods, we show that the LMS makes an important contribution to the overall volcanic forcing. The role played by volcanic-induced cooling in the recent warming hiatus is not accurately described in the latest phase of the Coupled Model Intercomparison Project. Here, the authors use satellite and aircraft data to investigate the radiative impact of volcanic aerosols in the lowermost stratosphere since the year 2000.
Intercomparison of in-situ aircraft and satellite aerosol measurements in the stratosphere
Aerosol composition and optical scattering from particles in the lowermost stratosphere (LMS) have been studied by comparing in-situ aerosol samples from the IAGOS-CARIBIC passenger aircraft with vertical profiles of aerosol backscattering obtained from the CALIOP lidar aboard the CALIPSO satellite. Concentrations of the dominating fractions of the stratospheric aerosol, being sulphur and carbon, have been obtained from post-flight analysis of IAGOS-CARIBIC aerosol samples. This information together with literature data on black carbon concentrations were used to calculate the aerosol backscattering which subsequently is compared with measurements by CALIOP. Vertical optical profiles were taken in an altitude range of several kilometres from and above the northern hemispheric extratropical tropopause for the years 2006-2014. We find that the two vastly different measurement platforms yield different aerosol backscattering, especially close to the tropopause where the influence from tropospheric aerosol is strong. The best agreement is found when the LMS is affected by volcanism, i.e., at elevated aerosol loadings. At background conditions, best agreement is obtained some distance (>2 km) above the tropopause in winter and spring, i.e., at likewise elevated aerosol loadings from subsiding aerosol-rich stratospheric air. This is to our knowledge the first time the CALIPSO lidar measurements have been compared to in-situ long-term aerosol measurements.
Mercury emissions of a coal-fired power plant in Germany
Hg ∕ SO2, Hg ∕ CO, NOx ∕ SO2 (NOx being the sum of NO and NO2) emission ratios (ERs) in the plume of the coal-fired power plant (CFPP), Lippendorf, near Leipzig, Germany, were determined within the European Tropospheric Mercury Experiment (ETMEP) aircraft campaign in August 2013. The gaseous oxidized mercury (GOM) fraction of mercury emissions was also assessed. Measured Hg ∕ SO2 and Hg ∕ CO ERs were within the measurement uncertainties consistent with the ratios calculated from annual emissions in 2013 reported by the CFPP operator, while the NOx ∕ SO2 ER was somewhat lower. The GOM fraction of total mercury emissions, estimated using three independent methods, was below ∼ 25 %. This result is consistent with other findings and suggests that GOM fractions of ∼ 40 % of CFPP mercury emissions in current emission inventories are overestimated.
Estimating the contribution of monsoon-related biogenic production to methane emissions from South Asia using CARIBIC observations
During the summer monsoon the upper troposphere over South Asia is characterized by the monsoon anticyclone centered above the Tibetan Plateau. Surface air that has been rapidly transported upwards through deep convection becomes trapped within the strong anticyclonic circulation. Observations of trace gases within this anticyclone by the CARIBIC flying observatory revealed large enhancements in the greenhouse gas methane (CH4), which increased over the course of the monsoon. Meteorological analysis indicated that these air masses originated primarily in India, for which relatively little is known about CH4 emissions. Using correlations between concentrations of CH4 and carbon monoxide (CO) we estimated total emissions of 30.8 Tg CH4during the 2008 monsoon season (June–September), 19.7 Tg of which were identified as additional, monsoon‐related biogenic methane using the relationship of CH4 to ethane (C2H6). After accounting for the ∼3.9 Tg attributed to rice agriculture in the current inventories, ∼15.8 Tg of additional CH4 remain. Underestimated rice emissions provide a partial explanation, with the remainder most likely attributable to microbial production in waterlogged areas such as landfills, polluted waterways and wetlands. Key Points Observed large increase in S. Asian methane emissions during the summer monsoon Sources identified as biogenic, releasing ~15.8 Tg of additional methane Accounts for ~50% of total June–Sept methane emissions
Trapping, chemistry, and export of trace gases in the South Asian summer monsoon observed during CARIBIC flights in 2008
The CARIBIC (Civil Aircraft for the Regular Investigation of the Atmosphere Based on an Instrument Container) passenger aircraft observatory performed in situ measurements at 10–12 km altitude in the South Asian summer monsoon anticyclone between June and September 2008. These measurements enable us to investigate this atmospheric region (which so far has mostly been observed from satellites) using the broad suite of trace gases and aerosol particles measured by CARIBIC. Elevated levels of a variety of atmospheric pollutants (e.g. carbon monoxide, total reactive nitrogen oxides, aerosol particles, and several volatile organic compounds) were recorded. The measurements provide detailed information about the chemical composition of air in different parts of the monsoon anticyclone, particularly of ozone precursors. While covering a range of 3500 km inside the monsoon anticyclone, CARIBIC observations show remarkable consistency, i.e. with distinct latitudinal patterns of trace gases during the entire monsoon period. Using the CARIBIC trace gas and aerosol particle measurements in combination with the Lagrangian particle dispersion model FLEXPART, we investigated the characteristics of monsoon outflow and the chemical evolution of air masses during transport. The trajectory calculations indicate that these air masses originated mainly from South Asia and mainland Southeast Asia. Estimated photochemical ages of the air were found to agree well with transport times from a source region east of 90–95° E. The photochemical ages of the air in the southern part of the monsoon anticyclone were systematically younger (less than 7 days) and the air masses were mostly in an ozone-forming chemical mode. In its northern part the air masses were older (up to 13 days) and had unclear ozone formation or destruction potential. Based on analysis of forward trajectories, several receptor regions were identified. In addition to predominantly westward transport, we found evidence for efficient transport (within 10 days) to the Pacific and North America, particularly during June and September, and also of cross-tropopause exchange, which was strongest during June and July. Westward transport to Africa and further to the Mediterranean was the main pathway during July.
Particulate sulfur in the upper troposphere and lowermost stratosphere – sources and climate forcing
This study is based on fine-mode aerosol samples collected in the upper troposphere (UT) and the lowermost stratosphere (LMS) of the Northern Hemisphere extratropics during monthly intercontinental flights at 8.8–12 km altitude of the IAGOS-CARIBIC platform in the time period 1999–2014. The samples were analyzed for a large number of chemical elements using the accelerator-based methods PIXE (particle-induced X-ray emission) and PESA (particle elastic scattering analysis). Here the particulate sulfur concentrations, obtained by PIXE analysis, are investigated. In addition, the satellite-borne lidar aboard CALIPSO is used to study the stratospheric aerosol load. A steep gradient in particulate sulfur concentration extends several kilometers into the LMS, as a result of increasing dilution towards the tropopause of stratospheric, particulate sulfur-rich air. The stratospheric air is diluted with tropospheric air, forming the extratropical transition layer (ExTL). Observed concentrations are related to the distance to the dynamical tropopause. A linear regression methodology handled seasonal variation and impact from volcanism. This was used to convert each data point into stand-alone estimates of a concentration profile and column concentration of particulate sulfur in a 3 km altitude band above the tropopause. We find distinct responses to volcanic eruptions, and that this layer in the LMS has a significant contribution to the stratospheric aerosol optical depth and thus to its radiative forcing. Further, the origin of UT particulate sulfur shows strong seasonal variation. We find that tropospheric sources dominate during the fall as a result of downward transport of the Asian tropopause aerosol layer (ATAL) formed in the Asian monsoon, whereas transport down from the Junge layer is the main source of UT particulate sulfur in the first half of the year. In this latter part of the year, the stratosphere is the clearly dominating source of particulate sulfur in the UT during times of volcanic influence and under background conditions.
Acetone–CO enhancement ratios in the upper troposphere based on 7 years of CARIBIC data: new insights and estimates of regional acetone fluxes
Acetone and carbon monoxide (CO) are two important trace gases controlling the oxidation capacity of the troposphere; enhancement ratios (EnRs) are useful in assessing their sources and fate between emission and sampling, especially in pollution plumes. In this study, we focus on in situ data from the upper troposphere recorded by the passenger-aircraft-based IAGOS–CARIBIC (In-service Aircraft for a Global Observing System–Civil Aircraft for the Regular Investigation of the atmosphere Based on an Instrument Container) observatory over the periods 2006–2008 and 2012–2015. This dataset is used to investigate the seasonal and spatial variation of acetone–CO EnRs. Furthermore, we utilize a box model accounting for dilution, chemical degradation and secondary production of acetone from precursors. In former studies, increasing acetone–CO EnRs in a plume were associated with secondary production of acetone. Results of our box model question this common presumption and show increases of acetone–CO EnR over time without taking secondary production of acetone into account. The temporal evolution of EnRs in the upper troposphere, especially in summer, is not negligible and impedes the interpretation of EnRs as a means for partitioning of acetone and CO sources in the boundary layer. In order to ensure that CARIBIC EnRs represent signatures of source regions with only small influences by dilution and chemistry, we limit our analysis to temporal and spatial coherent events of high-CO enhancement. We mainly focus on North America and Southeast Asia because of their different mix of pollutant sources and the good data coverage. For both regions, we find the expected seasonal variation in acetone–CO EnRs with maxima in summer, but with higher amplitude over North America. We derive mean (± standard deviation) annual acetone fluxes of (53 ± 27) 10−13 kg m−2 s−1 and (185 ± 80) 10−13 kg m−2 s−1 for North America and Southeast Asia, respectively. The derived flux for North America is consistent with the inventories, whereas Southeast Asia acetone emissions appear to be underestimated by the inventories.
Formation and composition of the UTLS aerosol
Stratospheric aerosol has long been seen as a pure mixture of sulfuric acid and water. Recent measurements, however, found a considerable carbonaceous fraction extending at least 8 km into the stratosphere. This fraction affects the aerosol optical depth (AOD) and the radiative properties, and hence the radiative forcing and climate impact of the stratospheric aerosol. Here we present an investigation based on a decade (2005–2014) of airborne aerosol sampling at 9–12 km altitude in the tropics and the northern hemisphere (NH) aboard the IAGOS-CARIBIC passenger aircraft. We find that the chemical composition of tropospheric aerosol in the tropics differs markedly from that at NH midlatitudes, and, that the carbonaceous stratospheric aerosol is oxygen-poor compared to the tropospheric aerosol. Furthermore, the carbonaceous and sulfurous components of the aerosol in the lowermost stratosphere (LMS) show strong increases in concentration connected with springtime subsidence from overlying stratospheric layers. The LMS concentrations significantly exceed those in the troposphere, thus clearly indicating a stratospheric production of not only the well-established sulfurous aerosol, but also a considerable but less understood carbonaceous component.
Optimal estimation of the present-day global methane budget
Historical observations of the 13C/12C ratio of atmospheric CH4 are used to constrain the present‐day methane budget using optimal estimation. Three methane emission scenarios with basis in the recent literature are evaluated against historical 13CH4 observations, considering all uncertainties together. We estimate that present‐day methane emissions are composed of 64%–76% biogenic, 19%–30% fossil, and 4%–6% pyrogenic sources. It is found that, barring any changes in the isotopic signatures of sources and sink processes, satisfying the 13C/12C record requires estimates of present‐day anthropogenic fuel‐related emissions that are on the high end of the assumed uncertainties, even when a significant geological source is included. Extending present‐day results to the time of the Last Glacial Maximum (LGM), emissions from wetlands are implied to be 40%–62% of the present‐day value, the higher number being valid only for a scenario with strong (∼30 Tg/a) geological emissions and roughly 20% greater biomass burning emissions at LGM relative to the present‐day.
Sources of increase in lowermost stratospheric sulphurous and carbonaceous aerosol background concentrations during 1999-2008 derived from CARIBIC flights
This study focuses on sulphurous and carbonaceous aerosol, the major constituents of particulate matter in the lowermost stratosphere (LMS), based on in situ measurements from 1999 to 2008. Aerosol particles in the size range of 0.08-2 µm were collected monthly during intercontinental flights with the CARIBIC passenger aircraft, presenting the first long-term study on carbonaceous aerosol in the LMS. Elemental concentrations were derived via subsequent laboratory-based ion beam analysis. The stoichiometry indicates that the sulphurous fraction is sulphate, while an O/C ratio of 0.2 indicates that the carbonaceous aerosol is organic. The concentration of the carbonaceous component corresponded on average to approximately 25% of that of the sulphurous, and could not be explained by forest fires or biomass burning, since the average mass ratio of Fe to K was 16 times higher than typical ratios in effluents from biomass burning. The data reveal increasing concentrations of particulate sulphur and carbon with a doubling of particulate sulphur from 1999 to 2008 in the northern hemisphere LMS. Periods of elevated concentrations of particulate sulphur in the LMS are linked to downward transport of aerosol from higher altitudes, using ozone as a tracer for stratospheric air. Tropical volcanic eruptions penetrating the tropical tropopause are identified as the likely cause of the particulate sulphur and carbon increase in the LMS, where entrainment of lower tropospheric air into volcanic jets and plumes could be the cause of the carbon increase.