Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Series Title
      Series Title
      Clear All
      Series Title
  • Reading Level
      Reading Level
      Clear All
      Reading Level
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Content Type
    • Item Type
    • Is Full-Text Available
    • Subject
    • Country Of Publication
    • Publisher
    • Source
    • Target Audience
    • Donor
    • Language
    • Place of Publication
    • Contributors
    • Location
58 result(s) for "Venditti, Robert"
Sort by:
Rise of the robot army
Reluctant superhero Miles Taylor battles an army of deadly robots, but struggles to dominate eighth grade at Chapman Middle School, where bullies and unrequited love await.
Human frontal lobes are not relatively large
One of the most pervasive assumptions about human brain evolution is that it involved relative enlargement of the frontal lobes. We show that this assumption is without foundation. Analysis of five independent data sets using correctly scaled measures and phylogenetic methods reveals that the size of human frontal lobes, and of specific frontal regions, is as expected relative to the size of other brain structures. Recent claims for relative enlargement of human frontal white matter volume, and for relative enlargement shared by all great apes, seem to be mistaken. Furthermore, using a recently developed method for detecting shifts in evolutionary rates, we find that the rate of change in relative frontal cortex volume along the phylogenetic branch leading to humans was unremarkable and that other branches showed significantly faster rates of change. Although absolute and proportional frontal region size increased rapidly in humans, this change was tightly correlated with corresponding size increases in other areas and whole brain size, and with decreases in frontal neuron densities. The search for the neural basis of human cognitive uniqueness should therefore focus less on the frontal lobes in isolation and more on distributed neural networks.
Macroevolutionary brain scaling is a microevolutionary metaphenomenon
From bees to blue whales, it has long been assumed that brain size scales with body size according to a simple log-linear relationship – with differences in the slope and intercept observed amongst different groups of animals. However, recent analyses in mammals contradict this view, revealing size dependency in the form of curvature in the brain and body mass relationship. Here, we use data from 4679 species across seven animal classes and spanning nearly 12 orders of magnitude to uncover near universal curvilinearity. We demonstrate that this body size dependence is a metaphenomenon emerging from a pattern of diminishing allometry within species with increasing body mass. This has fundamental implications for how we interpret macroevolutionary patterns – which can arise as a consequence of within-lineage dynamics. Our integration of inter- and intra-specific allometries reshapes perspectives on morphological evolution by providing a broader framework for understanding how microevolutionary within-species dynamics shape macroevolutionary phenomena. Recent work has demonstrated that the relationship between brain and body mass across mammals is curvilinear. Here, the authors demonstrate this curvilinearity across 4679 species, spanning multiple major animal classes. They show that it is caused by systematic changes in allometry within species leading to macroevolutionary patterns.
The lightning thief : the graphic novel
After learning that he is the son of a mortal woman and Poseidon, god of the sea, twelve-year-old Percy is sent to a summer camp for demigods like himself, and joins his new friends on a quest to prevent a war between the gods.
Phylogeny and metabolic scaling in mammals
The scaling of metabolic rates to body size is widely considered to be of great biological and ecological importance, and much attention has been devoted to determining its theoretical and empirical value. Most debate centers on whether the underlying power law describing metabolic rates is 2/3 (as predicted by scaling of surface area/volume relationships) or 3/4 (\"Kleiber's law\"). Although recent evidence suggests that empirically derived exponents vary among clades with radically different metabolic strategies, such as ectotherms and endotherms, models, such as the metabolic theory of ecology, depend on the assumption that there is at least a predominant, if not universal, metabolic scaling exponent. Most analyses claimed to support the predictions of general models, however, failed to control for phylogeny. We used phylogenetic generalized least-squares models to estimate allometric slopes for both basal metabolic rate (BMR) and field metabolic rate (FMR) in mammals. Metabolic rate scaling conformed to no single theoretical prediction, but varied significantly among phylogenetic lineages. In some lineages we found a 3/4 exponent, in others a 2/3 exponent, and in yet others exponents differed significantly from both theoretical values. Analysis of the phylogenetic signal in the data indicated that the assumptions of neither species-level analysis nor independent contrasts were met. Analyses that assumed no phylogenetic signal in the data (species-level analysis) or a strong phylogenetic signal (independent contrasts), therefore, returned estimates of allometric slopes that were erroneous in 30% and 50% of cases, respectively. Hence, quantitative estimation of the phylogenetic signal is essential for determining scaling exponents. The lack of evidence for a predominant scaling exponent in these analyses suggests that general models of metabolic scaling, and macro-ecological theories that depend on them, have little explanatory power.
The sea of monsters : the graphic novel
After discovering a secret that makes him question the honor of being the son of Poseidon, demi-god Percy Jackson journeys into the Sea of Monsters in an attempt to save Camp Half-Blood.
The influence of lignin content and structure on hemicellulose alkaline extraction for non-wood and hardwood lignocellulosic biomass
The extractability of hemicellulose from different lignocellulosics depends on the source of biomass. Differences in hemicellulose extractability are believed to be due to plant-specific hemicellulose arrangement alongside lignin within the cell wall. In this research, six biomasses were used to probe hemicellulose alkaline extractability as a function of the native lignin within the biomasses. Quantitative 2D-HSQC and 13 C NMR analysis were performed to determine the S/G (S: syringyl, G: guaiacyl) and lignin-carbohydrate complex (LCC) linkages of milled wood lignin isolated from these biomasses. A strong negative correlation was observed between total lignin content and hemicellulose extractability, demonstrating that a greater presence of lignin in the original material results in lower xylan solubilization. In addition, a correlation between S/G of lignin and xylan dissolution was found within a group of hardwoods and within a group of non-woods. This suggests that monomeric constituency also influences xylan’s propensity for dissolution in 10% NaOH. Although there is some uncertainty in the quantification of LCC linkages, both non-woods and hardwoods exhibited negative correlations between alkaline-stable LCC linkages content and xylan extractability. This suggests that alkaline-stable LCC structures are associated with a decrease in the alkaline extractability of hemicellulose. Graphical abstract
Percy Jackson and the Titan's curse : the graphic novel
When the goddess Artemis disappears while hunting a rare, ancient monster, a group of her followers joins Percy and his friends in an attempt to find and rescue her before the winter solstice, when her influence is needed to sway the Olympian Council regarding the war with the Titans.
Profiles of Accelerometry-Derived Physical Activity Are Related to Perceived Physical Fatigability in Older Adults
Physical activity (PA) is associated with greater fatigability in older adults; little is known about magnitude, shape, timing and variability of the entire 24-h rest–activity rhythm (RAR) associated with fatigability. We identified which features of the 24-h RAR pattern were independently and jointly associated with greater perceived physical fatigability (Pittsburgh Fatigability Scale, PFS, 0–50) in older adults (n = 181, 71.3 ± 6.7 years). RARs were characterized using anti-logistic extended cosine models and 4-h intervals of PA means and standard deviations across days. A K-means clustering algorithm approach identified four profiles of RAR features: “Less Active/Robust”, “Earlier Risers”, “More Active/Robust” and “Later RAR”. Quantile regression tested associations of each RAR feature/profile on median PFS adjusted for age, sex, race, body mass index and depression symptomatology. Later rise times (up mesor; β = 1.38, p = 0.01) and timing of midpoint of activity (acrophase; β = 1.29, p = 0.01) were associated with higher PFS scores. Lower PA between 4 a.m. and 8 a.m. was associated with higher PFS scores (β = −4.50, p = 0.03). “Less Active/Robust” (β = 6.14, p = 0.01) and “Later RAR” (β = 3.53, p = 0.01) patterns were associated with higher PFS scores compared to “Earlier Risers”. Greater physical fatigability in older adults was associated with dampened, more variable, and later RARs. This work can guide development of interventions aimed at modifying RARs to reduce fatigability in older adults.