Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
44
result(s) for
"Ventura, Valérie"
Sort by:
Accurately estimating neuronal correlation requires a new spike-sorting paradigm
by
Ventura, Valérie
,
Gerkin, Richard C
in
accuracy
,
Action Potentials
,
Action Potentials - physiology
2012
Neurophysiology is increasingly focused on identifying coincident activity among neurons. Strong inferences about neural computation are made from the results of such studies, so it is important that these results be accurate. However, the preliminary step in the analysis of such data, the assignment of spike waveforms to individual neurons (\"spike-sorting\"), makes a critical assumption which undermines the analysis: that spikes, and hence neurons, are independent. We show that this assumption guarantees that coincident spiking estimates such as correlation coefficients are biased. We also show how to eliminate this bias. Our solution involves sorting spikes jointly, which contrasts with the current practice of sorting spikes independently of other spikes. This new \"ensemble sorting\" yields unbiased estimates of coincident spiking, and permits more data to be analyzed with confidence, improving the quality and quantity of neurophysiological inferences. These results should be of interest outside the context of neuronal correlations studies. Indeed, simultaneous recording of many neurons has become the rule rather than the exception in experiments, so it is essential to spike sort correctly if we are to make valid inferences about any properties of, and relationships between, neurons.
Journal Article
Traditional Waveform Based Spike Sorting Yields Biased Rate Code Estimates
by
Fienberg, Stephen E.
,
Ventura, Valérie
in
Accuracy
,
Behavioral neuroscience
,
Biological Sciences
2009
Much of neuroscience has to do with relating neural activity and behavior or environment. One common measure of this relationship is the firing rates of neurons as functions of behavioral or environmental parameters, often called tuning functions and receptive fields. Firing rates are estimated from the spike trains of neurons recorded by electrodes implanted in the brain. Individual neurons' spike trains are not typically readily available, because the signal collected at an electrode is often a mixture of activities from different neurons and noise. Extracting individual neurons' spike trains from voltage signals, which is known as spike sorting, is one of the most important data analysis problems in neuroscience, because it has to be undertaken prior to any analysis of neurophysiological data in which more than one neuron is believed to be recorded on a single electrode. All current spike-sorting methods consist of clustering the characteristic spike waveforms of neurons. The sequence of first spike sorting based on waveforms, then estimating tuning functions, has long been the accepted way to proceed. Here, we argue that the covariates that modulate tuning functions also contain information about spike identities, and that if tuning information is ignored for spike sorting, the resulting tuning function estimates are biased and inconsistent, unless spikes can be classified with perfect accuracy. This means, for example, that the commonly used peristimulus time histogram is a biased estimate of the firing rate of a neuron that is not perfectly isolated. We further argue that the correct conceptual way to view the problem out is to note that spike sorting provides information about rate estimation and vice versa, so that the two relationships should be considered simultaneously rather than sequentially. Indeed we show that when spike sorting and tuning-curve estimation are performed in parallel, unbiased estimates of tuning curves can be recovered even from imperfectly sorted neurons.
Journal Article
Can auxiliary indicators improve COVID-19 forecasting and hotspot prediction?
by
Green, Alden
,
DeFries, Nat
,
Tang, Jingjing
in
Autoregressive models
,
Autoregressive processes
,
Coronaviruses
2021
Short-term forecasts of traditional streams from public health reporting (such as cases, hospitalizations, and deaths) are a key input to public health decision-making during a pandemic. Since early 2020, our research group has worked with data partners to collect, curate, and make publicly available numerous real-time COVID-19 indicators, providing multiple views of pandemic activity in the United States. This paper studies the utility of five such indicators—derived from deidentified medical insurance claims, self-reported symptoms from online surveys, and COVID-related Google search activity—from a forecasting perspective. For each indicator, we ask whether its inclusion in an autoregressive (AR) model leads to improved predictive accuracy relative to the same model excluding it. Such an AR model, without external features, is already competitive with many top COVID-19 forecasting models in use today. Our analysis reveals that 1) inclusion of each of these five indicators improves on the overall predictive accuracy of the AR model; 2) predictive gains are in general most pronounced during times in which COVID cases are trending in “flat” or “down” directions; and 3) one indicator, based on Google searches, seems to be particularly helpful during “up” trends.
Journal Article
An open repository of real-time COVID-19 indicators
by
Haff, George
,
DeFries, Nat
,
Tang, Jingjing
in
Ambulatory Care - trends
,
Biological Sciences
,
Coronaviruses
2021
The COVID-19 pandemic presented enormous data challenges in the United States. Policy makers, epidemiological modelers, and health researchers all require up-to-date data on the pandemic and relevant public behavior, ideally at fine spatial and temporal resolution. The COVIDcast API is our attempt to fill this need: Operational since April 2020, it provides open access to both traditional public health surveillance signals (cases, deaths, and hospitalizations) and many auxiliary indicators of COVID-19 activity, such as signals extracted from deidentified medical claims data, massive online surveys, cell phone mobility data, and internet search trends. These are available at a fine geographic resolution (mostly at the county level) and are updated daily. The COVIDcast API also tracks all revisions to historical data, allowing modelers to account for the frequent revisions and backfill that are common for many public health data sources. All of the data are available in a common format through the API and accompanying R and Python software packages. This paper describes the data sources and signals, and provides examples demonstrating that the auxiliary signals in the COVIDcast API present information relevant to tracking COVID activity, augmenting traditional public health reporting and empowering research and decision-making.
Journal Article
Stability of point process spiking neuron models
2019
Point process regression models, based on generalized linear model (GLM) technology, have been widely used for spike train analysis, but a recent paper by Gerhard et al. described a kind of instability, in which fitted models can generate simulated spike trains with explosive firing rates. We analyze the problem by extending the methods of Gerhard et al. First, we improve their instability diagnostic and extend it to a wider class of models. Next, we point out some common situations in which instability can be traced to model lack of fit. Finally, we investigate distinctions between models that use a single filter to represent the effects of all spikes prior to any particular time t, as in a 2008 paper by Pillow et al., and those that allow different filters for each spike prior to time t, as in a 2001 paper by Kass and Ventura. We re-analyze the data sets used by Gerhard et al., introduce an additional data set that exhibits bursting, and use a well-known model described by Izhikevich to simulate spike trains from various ground truth scenarios. We conclude that models with multiple filters tend to avoid instability, but there are unlikely to be universal rules. Instead, care in data fitting is required and models need to be assessed for each unique set of data.
Journal Article
Automated acoustic detection of mouse scratching
by
G’Sell, Max
,
Snyder, Lindsey M.
,
Ross, Sarah E.
in
Acoustic emission testing
,
Acoustics
,
Acoustics - instrumentation
2017
Itch is an aversive somatic sense that elicits the desire to scratch. In animal models of itch, scratching behavior is frequently used as a proxy for itch, and this behavior is typically assessed through visual quantification. However, manual scoring of videos has numerous limitations, underscoring the need for an automated approach. Here, we propose a novel automated method for acoustic detection of mouse scratching. Using this approach, we show that chloroquine-induced scratching behavior in C57BL/6 mice can be quantified with reasonable accuracy (85% sensitivity, 75% positive predictive value). This report is the first method to apply supervised learning techniques to automate acoustic scratch detection.
Journal Article
ADJUSTED REGULARIZATION IN LATENT GRAPHICAL MODELS
by
Kass, Robert E.
,
Vinci, Giuseppe
,
Smith, Matthew A.
in
SPECIAL SECTION IN MEMORY OF STEPHEN E. FIENBERG (1942–2016) AOAS EDITOR-IN-CHIEF 2013–2015
2018
A major challenge in contemporary neuroscience is to analyze data from large numbers of neurons recorded simultaneously across many experimental replications (trials), where the data are counts of neural firing events, and one of the basic problems is to characterize the dependence structure among such multivariate counts. Methods of estimating high-dimensional covariation based on ℓ₁-regularization are most appropriate when there are a small number of relatively large partial correlations, but in neural data there are often large numbers of relatively small partial correlations. Furthermore, the variation across trials is often confounded by Poisson-like variation within trials. To overcome these problems we introduce a comprehensive methodology that imbeds a Gaussian graphical model into a hierarchical structure: the counts are assumed Poisson, conditionally on latent variables that follow a Gaussian graphical model, and the graphical model parameters, in turn, are assumed to depend on physiologically-motivated covariates, which can greatly improve correct detection of interactions (nonzero partial correlations). We develop a Bayesian approach to fitting this covariate-adjusted generalized graphical model and we demonstrate its success in simulation studies. We then apply it to data from an experiment on visual attention, where we assess functional interactions between neurons recorded from two brain areas.
Journal Article
Mechanisms of the Osteogenic Switch of Smooth Muscle Cells in Vascular Calcification: WNT Signaling, BMPs, Mechanotransduction, and EndMT
by
Segars, Mary Frances
,
Schwartz, Olivia
,
Simpson, C. LaShan
in
Arteries
,
Bioengineering
,
Biomedical materials
2020
Characterized by the hardening of arteries, vascular calcification is the deposition of hydroxyapatite crystals in the arterial tissue. Calcification is now understood to be a cell-regulated process involving the phenotypic transition of vascular smooth muscle cells into osteoblast-like cells. There are various pathways of initiation and mechanisms behind vascular calcification, but this literature review highlights the wingless-related integration site (WNT) pathway, along with bone morphogenic proteins (BMPs) and mechanical strain. The process mirrors that of bone formation and remodeling, as an increase in mechanical stress causes osteogenesis. Observing the similarities between the two may aid in the development of a deeper understanding of calcification. Both are thought to be regulated by the WNT signaling cascade and bone morphogenetic protein signaling and can also be activated in response to stress. In a pro-calcific environment, integrins and cadherins of vascular smooth muscle cells respond to a mechanical stimulus, activating cellular signaling pathways, ultimately resulting in gene regulation that promotes calcification of the vascular extracellular matrix (ECM). The endothelium is also thought to contribute to vascular calcification via endothelial to mesenchymal transition, creating greater cell plasticity. Each of these factors contributes to calcification, leading to increased cardiovascular mortality in patients, especially those suffering from other conditions, such as diabetes and kidney failure. Developing a better understanding of the mechanisms behind calcification may lead to the development of a potential treatment in the future.
Journal Article
Adjusted regularization of cortical covariance
by
Vinci, Giuseppe
,
Smith, Matthew A
,
Kass, Robert E
in
Computer simulation
,
Correlation
,
Covariance
2018
It is now common to record dozens to hundreds or more neurons simultaneously, and to ask how the network activity changes across experimental conditions. A natural framework for addressing questions of functional connectivity is to apply Gaussian graphical modeling to neural data, where each edge in the graph corresponds to a non-zero partial correlation between neurons. Because the number of possible edges is large, one strategy for estimating the graph has been to apply methods that aim to identify large sparse effects using an L1\\(L_{1}\\) penalty. However, the partial correlations found in neural spike count data are neither large nor sparse, so techniques that perform well in sparse settings will typically perform poorly in the context of neural spike count data. Fortunately, the correlated firing for any pair of cortical neurons depends strongly on both their distance apart and the features for which they are tuned. We introduce a method that takes advantage of these known, strong effects by allowing the penalty to depend on them: thus, for example, the connection between pairs of neurons that are close together will be penalized less than pairs that are far apart. We show through simulations that this physiologically-motivated procedure performs substantially better than off-the-shelf generic tools, and we illustrate by applying the methodology to populations of neurons recorded with multielectrode arrays implanted in macaque visual cortex areas V1 and V4.
Journal Article
Traditional waveform based spike sorting yields biased rate code estimates
2009
Much of neuroscience has to do with relating neural activity and behavior or environment. One common measure of this relationship is the firing rates of neurons as functions of behavioral or environmental parameters, often called tuning functions and receptive fields. Firing rates are estimated from the spike trains of neurons recorded by electrodes implanted in the brain. Individual neurons' spike trains are not typically readily available, because the signal collected at an electrode is often a mixture of activities from different neurons and noise. Extracting individual neurons' spike trains from voltage signals, which is known as spike sorting, is one of the most important data analysis problems in neuroscience, because it has to be undertaken prior to any analysis of neurophysiological data in which more than one neuron is believed to be recorded on a single electrode. All current spike-sorting methods consist of clustering the characteristic spike waveforms of neurons. The sequence of first spike sorting based on waveforms, then estimating tuning functions, has long been the accepted way to proceed. Here, we argue that the covariates that modulate tuning functions also contain information about spike identities, and that if tuning information is ignored for spike sorting, the resulting tuning function estimates are biased and inconsistent, unless spikes can be classified with perfect accuracy. This means, for example, that the commonly used peristimulus time histogram is a biased estimate of the firing rate of a neuron that is not perfectly isolated. We further argue that the correct conceptual way to view the problem out is to note that spike sorting provides information about rate estimation and vice versa, so that the two relationships should be considered simultaneously rather than sequentially. Indeed we show that when spike sorting and tuning-curve estimation are performed in parallel, unbiased estimates of tuning curves can be recovered even from imperfectly sorted neurons.
Journal Article