Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
61
result(s) for
"Veres, Patrick R."
Sort by:
Fine particle pH and gas–particle phase partitioning of inorganic species in Pasadena, California, during the 2010 CalNex campaign
by
Jimenez, Jose L.
,
Veres, Patrick R.
,
Roberts, James M.
in
Aerosol effects
,
Aerosols
,
Air quality
2017
pH is a fundamental aerosol property that affects ambient particle concentration and composition, linking pH to all aerosol environmental impacts. Here, PM1 and PM2. 5 pH are calculated based on data from measurements during the California Research at the Nexus of Air Quality and Climate Change (CalNex) study from 15 May to 15 June 2010 in Pasadena, CA. Particle pH and water were predicted with the ISORROPIA-II thermodynamic model and validated by comparing predicted to measured gas–particle partitioning of inorganic nitrate, ammonium, and chloride. The study mean ± standard deviation PM1 pH was 1.9 ± 0.5 for the SO42−–NO3−–NH4+–HNO3–NH3 system. For PM2. 5, internal mixing of sea salt components (SO42−–NO3−–NH4+–Na+–Cl−–K+–HNO3–NH3–HCl system) raised the bulk pH to 2.7 ± 0.3 and improved predicted nitric acid partitioning with PM2. 5 components. The results show little effect of sea salt on PM1 pH, but significant effects on PM2. 5 pH. A mean PM1 pH of 1.9 at Pasadena was approximately one unit higher than what we have reported in the southeastern US, despite similar temperature, relative humidity, and sulfate ranges, and is due to higher total nitrate concentrations (nitric acid plus nitrate) relative to sulfate, a situation where particle water is affected by semi-volatile nitrate concentrations. Under these conditions nitric acid partitioning can further promote nitrate formation by increasing aerosol water, which raises pH by dilution, further increasing nitric acid partitioning and resulting in a significant increase in fine particle nitrate and pH. This study provides insights into the complex interactions between particle pH and nitrate in a summertime coastal environment and a contrast to recently reported pH in the eastern US in summer and winter and the eastern Mediterranean. All studies have consistently found highly acidic PM1 with pH generally below 3.
Journal Article
Global tropospheric halogen (Cl, Br, I) chemistry and its impact on oxidants
2021
We present an updated mechanism for tropospheric halogen (Cl + Br + I) chemistry in the GEOS-Chem global atmospheric chemical transport model and apply it to investigate halogen radical cycling and implications for tropospheric oxidants. Improved representation of HOBr heterogeneous chemistry and its pH dependence in our simulation leads to less efficient recycling and mobilization of bromine radicals and enables the model to include mechanistic sea salt aerosol debromination without generating excessive BrO. The resulting global mean tropospheric BrO mixing ratio is 0.19 ppt (parts per trillion), lower than previous versions of GEOS-Chem. Model BrO shows variable consistency and biases in comparison to surface and aircraft observations in marine air, which are often near or below the detection limit. The model underestimates the daytime measurements of Cl2 and BrCl from the ATom aircraft campaign over the Pacific and Atlantic, which if correct would imply a very large missing primary source of chlorine radicals. Model IO is highest in the marine boundary layer and uniform in the free troposphere, with a global mean tropospheric mixing ratio of 0.08 ppt, and shows consistency with surface and aircraft observations. The modeled global mean tropospheric concentration of Cl atoms is 630 cm−3, contributing 0.8 % of the global oxidation of methane, 14 % of ethane, 8 % of propane, and 7 % of higher alkanes. Halogen chemistry decreases the global tropospheric burden of ozone by 11 %, NOx by 6 %, and OH by 4 %. Most of the ozone decrease is driven by iodine-catalyzed loss. The resulting GEOS-Chem ozone simulation is unbiased in the Southern Hemisphere but too low in the Northern Hemisphere.
Journal Article
Multi-instrument comparison and compilation of non-methane organic gas emissions from biomass burning and implications for smoke-derived secondary organic aerosol precursors
by
Veres, Patrick R.
,
Hatch, Lindsay E.
,
Barsanti, Kelley C.
in
Aerosols
,
Air pollution
,
Air sampling
2017
Multiple trace-gas instruments were deployed during the fourth Fire Lab at Missoula Experiment (FLAME-4), including the first application of proton-transfer-reaction time-of-flight mass spectrometry (PTR-TOFMS) and comprehensive two-dimensional gas chromatography–time-of-flight mass spectrometry (GC × GC-TOFMS) for laboratory biomass burning (BB) measurements. Open-path Fourier transform infrared spectroscopy (OP-FTIR) was also deployed, as well as whole-air sampling (WAS) with one-dimensional gas chromatography–mass spectrometry (GC-MS) analysis. This combination of instruments provided an unprecedented level of detection and chemical speciation. The chemical composition and emission factors (EFs) determined by these four analytical techniques were compared for four representative fuels. The results demonstrate that the instruments are highly complementary, with each covering some unique and important ranges of compositional space, thus demonstrating the need for multi-instrument approaches to adequately characterize BB smoke emissions. Emission factors for overlapping compounds generally compared within experimental uncertainty, despite some outliers, including monoterpenes. Data from all measurements were synthesized into a single EF database that includes over 500 non-methane organic gases (NMOGs) to provide a comprehensive picture of speciated, gaseous BB emissions. The identified compounds were assessed as a function of volatility; 6–11 % of the total NMOG EF was associated with intermediate-volatility organic compounds (IVOCs). These atmospherically relevant compounds historically have been unresolved in BB smoke measurements and thus are largely missing from emission inventories. Additionally, the identified compounds were screened for published secondary organic aerosol (SOA) yields. Of the total reactive carbon (defined as EF scaled by the OH rate constant and carbon number of each compound) in the BB emissions, 55–77 % was associated with compounds for which SOA yields are unknown or understudied. The best candidates for future smog chamber experiments were identified based on the relative abundance and ubiquity of the understudied compounds, and they included furfural, 2-methyl furan, 2-furan methanol, and 1,3-cyclopentadiene. Laboratory study of these compounds will facilitate future modeling efforts.
Journal Article
Exploring dimethyl sulfide (DMS) oxidation and implications for global aerosol radiative forcing
by
Gettelman, Andrew
,
Heald, Colette L.
,
Wang, Siyuan
in
Aerosol effects
,
Aerosol formation
,
Aerosols
2022
Aerosol indirect radiative forcing (IRF), which characterizes how aerosols alter cloud formation and properties, is very sensitive to the preindustrial (PI) aerosol burden. Dimethyl sulfide (DMS), emitted from the ocean, is a dominant natural precursor of non-sea-salt sulfate in the PI and pristine present-day (PD) atmospheres. Here we revisit the atmospheric oxidation chemistry of DMS, particularly under pristine conditions, and its impact on aerosol IRF. Based on previous laboratory studies, we expand the simplified DMS oxidation scheme used in the Community Atmospheric Model version 6 with chemistry (CAM6-chem) to capture the OH-addition pathway and the H-abstraction pathway and the associated isomerization branch. These additional oxidation channels of DMS produce several stable intermediate compounds, e.g., methanesulfonic acid (MSA) and hydroperoxymethyl thioformate (HPMTF), delay the formation of sulfate, and, hence, alter the spatial distribution of sulfate aerosol and radiative impacts. The expanded scheme improves the agreement between modeled and observed concentrations of DMS, MSA, HPMTF, and sulfate over most marine regions, based on the NASA Atmospheric Tomography (ATom), the Aerosol and Cloud Experiments in the Eastern North Atlantic (ACE-ENA), and the Variability of the American Monsoon Systems (VAMOS) Ocean-Cloud-Atmosphere-Land Study Regional Experiment (VOCALS-REx) measurements. We find that the global HPMTF burden and the burden of sulfate produced from DMS oxidation are relatively insensitive to the assumed isomerization rate, but the burden of HPMTF is very sensitive to a potential additional cloud loss. We find that global sulfate burden under PI and PD emissions increase to 412 Gg S (+29 %) and 582 Gg S (+8.8 %), respectively, compared to the standard simplified DMS oxidation scheme. The resulting annual mean global PD direct radiative effect of DMS-derived sulfate alone is −0.11 W m−2. The enhanced PI sulfate produced via the gas-phase chemistry updates alone dampens the aerosol IRF as anticipated (−2.2 W m−2 in standard versus −1.7 W m−2, with updated gas-phase chemistry). However, high clouds in the tropics and low clouds in the Southern Ocean appear particularly sensitive to the additional aqueous-phase pathways, counteracting this change (−2.3 W m−2). This study confirms the sensitivity of aerosol IRF to the PI aerosol loading and the need to better understand the processes controlling aerosol formation in the PI atmosphere and the cloud response to these changes.
Journal Article
Temperature-dependent sensitivity of iodide chemical ionization mass spectrometers
by
Neuman, J. Andrew
,
Veres, Patrick R.
,
Robinson, Michael A.
in
Anions
,
Atmospheric chemistry
,
Clusters
2022
Iodide chemical ionization mass spectrometry (CIMS) is a common analytical tool used in both laboratory and field experiments to measure a large suite of atmospherically relevant compounds. Here, we describe a systematic ion molecule reactor (IMR) temperature dependence of iodide CIMS analyte sensitivity for a wide range of analytes in laboratory experiments. Weakly bound iodide clusters, such as HCl, HONO, HCOOH, HCN, phenol, 2-nitrophenol, and acyl peroxynitrate (PAN) detected via the peroxy radical cluster, all exhibit strong IMR temperature dependence of sensitivity ranging from −3.4 % ∘C−1 to 5.9 % ∘C−1 (from 37 to 47 ∘C). Strongly bound iodide clusters, such as Br2, N2O5, ClNO2, and PAN detected via the carboxylate anion, all exhibit little to no IMR temperature dependence ranging from 0.2 % ∘C−1 to −0.9 % ∘C−1 (from 37 to 47 ∘C). The IMR temperature relationships of weakly bound clusters provide an estimate of net reaction enthalpy, and comparison with database values indicates that these clusters are in thermal equilibrium. Ground site HCOOH data collected in the summer of 2021 in Pasadena (CA) are corrected and show a reversal in the diel cycle, emphasizing the importance of this correction (35±6 % during the day, -26±2 % at night). Finally, we recommend two approaches to minimize this effect in the field, namely heating or cooling the IMR; the latter technique has the added benefit of improving absolute sensitivity.
Journal Article
A nitrate photolysis source of tropospheric HONO is incompatible with current understanding of atmospheric chemistry
by
Callaghan, Anna B
,
Guo, Hongyu
,
Rowlinson, Matthew J
in
Aerosols
,
Air quality
,
Atmospheric aerosols
2025
Recent observations of nitrous acid (HONO) in the remote troposphere show much higher concentrations than can be explained through known sources, with important implications for air quality and climate. Laboratory evidence and modelling of field observations suggests that nitrate aerosol photolysis is the likely mechanism providing the additional HONO, offering a rapid route for recycling of NO.sub.x from nitric acid (HNO.sub.3). Previous studies of the global impact of this chemistry have used either very restricted HONO data or a \"top-down\" approach to parameterize the HONO source by reconciling simulated and observed NO.sub.x concentrations. Here, we use multiple, independent tropospheric HONO observations from different locations to parameterize nitrate photolysis, and evaluate its impacts on global atmospheric chemistry using GEOS-Chem. The simulations improve agreement between modelled and observed HONO concentrations relative to previous studies, decreasing the model bias by 5 %-20 %. The remaining (and large) underestimate of HONO in the model is due predominantly to an underestimate of total nitrate aerosol (-95 %) and is reduced to 20 % when accounting for low model nitrate. Despite the low bias in the model HONO, we find that nitrate aerosol photolysis leads to substantial global increases in NO.sub.x, O.sub.3 and OH concentrations, likely beyond the observational constraints. The additional source of NO.sub.x (â¼ 48 Tg N yr.sup.-1 globally) is comparable to total NO.sub.x emissions from all sources (â¼ 55 Tg yr.sup.-1). These HONO observations in the remote troposphere, thus imply a large uncertainty in the NO.sub.x budget and an incomplete understanding of atmospheric chemistry. Improved techniques to measure HONO at the low concentrations typical of remote areas, coupled with more measurements in these areas and improved process level understanding of nitrate photolysis are needed to provide quantitative assessment of its potentially global-scale atmospheric impacts.
Journal Article
Isocyanic acid in the atmosphere and its possible link to smoke-related health effects
by
Roberts, James M
,
Yokelson, Robert J
,
Veres, Patrick R
in
Air Pollutants
,
at-risk population
,
atherosclerosis
2011
We measured isocyanic acid (HNCO) in laboratory biomass fires at levels up to 600 parts per billion by volume (ppbv), demonstrating that it has a significant source from pyrolysis/combustion of biomass. We also measured HNCO at mixing ratios up to 200 pptv (parts-per-trillion by volume) in ambient air in urban Los Angeles, CA, and in Boulder, CO, during the recent 2010 Fourmile Canyon fire. Further, our measurements of aqueous solubility show that HNCO is highly soluble, as it dissociates at physiological pH. Exposure levels > 1 ppbv provide a direct source of isocyanic acid and cyanate ion (NCOâ») to humans at levels that have recognized health effects: atherosclerosis, cataracts, and rheumatoid arthritis, through the mechanism of protein carbamylation. In addition to the wildland fire and urban sources, we observed HNCO in tobacco smoke, HNCO has been reported from the low-temperature combustion of coal, and as a by-product of urea-selective catalytic reduction (SCR) systems that are being phased-in to control on-road diesel NOx emissions in the United States and the European Union. Given the current levels of exposure in populations that burn biomass or use tobacco, the expected growth in biomass burning emissions with warmer, drier regional climates, and planned increase in diesel SCR controls, it is imperative that we understand the extent and effects of this HNCO exposure.
Journal Article
A portable, robust, stable, and tunable calibration source for gas-phase nitrous acid (HONO)
by
Neuman, J. Andrew
,
Washenfelder, Rebecca A.
,
Veres, Patrick R.
in
Calibration
,
Dilution
,
Gases
2020
Atmospheric HONO mixing ratios in indoor and outdoor environments span a range of less than a few parts per trillion by volume (pptv) up to tens of parts per billion by volume (ppbv) in combustion plumes. Previous HONO calibration sources have utilized proton transfer acid displacement from nitrite salts or solutions, with output that ranges from tens to thousands of ppbv. Instrument calibrations have thus required large dilution flows to obtain atmospherically relevant mixing ratios. Here we present a simple universal source to reach very low HONO calibration mixing ratios using a nitrite-coated reaction device with the addition of humid air and/or HCl from a permeation device. The calibration source developed in this work can generate HONO across the atmospherically relevant range and has high purity (> 90 %), reproducibility, and tunability. Mixing ratios at the tens of pptv level are easily reached with reasonable dilution flows. The calibration source can be assembled to start producing stable HONO mixing ratios (relative standard error, RSE ≤ 2 %) within 2 h, with output concentrations varying ≤ 25 % following simulated transport or complete disassembly of the instrument and with ≤ 10 % under ideal conditions. The simplicity of this source makes it highly versatile for field and lab experiments. The platform facilitates a new level of accuracy in established instrumentation, as well as intercomparison studies to identify systematic HONO measurement bias and interferences.
Journal Article
Observations of VOC Emissions and Photochemical Products over US Oil- and Gas-Producing Regions Using High-Resolution H3O+ CIMS (PTR-ToF-MS)
by
Gilman, Jessica B.
,
Thayer, Mitchell
,
Lerner, Brian M.
in
Aircraft
,
Alkanes
,
Aromatic compounds
2017
VOCs (Volatile Organic Compounds) related to oil and gas extraction operations in the United States were measured by H3O (sup plus) chemical ionization time-of-flight mass spectrometry (H3O (sup plus) ToFCIMS/PTR-ToF-MS (Time of Flight Chemical Ionization Mass Spectrometry/Proton Transfer Reaction-Time of Flight-Mass Spectroscopy) from aircraft during the Shale Oil and Natural Gas Nexus (SONGNEX) campaign in March-April 2015. This work presents an overview of major VOC species measured in nine oil- and gas-producing regions, and a more detailed analysis of H3O (sup plus) ToF-CIMS measurements in the Permian Basin within Texas and New Mexico. Mass spectra are dominated by small photochemically produced oxygenates and compounds typically found in crude oil: aromatics, cyclic alkanes, and alkanes. Mixing ratios of aromatics were frequently as high as those measured downwind of large urban areas. In the Permian, the H3O (sup plus) ToF-CIMS measured a number of underexplored or previously unreported species, including aromatic and cycloalkane oxidation products, nitrogen heterocycles including pyrrole (C4H5N) and pyrroline (C4H7N), H2S, and a diamondoid (adamantane) or unusual monoterpene. We additionally assess the specificity of a number of ion masses resulting from H3O (sup plus) ion chemistry previously reported in the literature, including several new or alternate interpretations.
Journal Article
Atmospheric chemistry, sources and sinks of carbon suboxide, C3O2
by
Lelieveld, Jos
,
Cabrera-Perez, David
,
Horowitz, Abraham
in
Absorption spectra
,
Air sampling
,
Atmosphere
2017
Carbon suboxide, O = C = C = C = O, has been detected in ambient air samples and has the potential to be a noxious pollutant and oxidant precursor; however, its lifetime and fate in the atmosphere are largely unknown. In this work, we collect an extensive set of studies on the atmospheric chemistry of C3O2. Rate coefficients for the reactions of C3O2 with OH radicals and ozone were determined as kOH = (2.6 ± 0.5) × 10−12 cm3 molecule−1 s−1 at 295 K (independent of pressure between ∼ 25 and 1000 mbar) and kO3 < 1.5 × 10−21 cm3 molecule−1 s−1 at 295 K. A theoretical study on the mechanisms of these reactions indicates that the sole products are CO and CO2, as observed experimentally. The UV absorption spectrum and the interaction of C3O2 with water (Henry's law solubility and hydrolysis rate constant) were also investigated, enabling its photodissociation lifetime and hydrolysis rates, respectively, to be assessed. The role of C3O2 in the atmosphere was examined using in situ measurements, an analysis of the atmospheric sources and sinks and simulation with the EMAC atmospheric chemistry–general circulation model. The results indicate sub-pptv levels at the Earth's surface, up to about 10 pptv in regions with relatively strong sources, e.g. influenced by biomass burning, and a mean lifetime of ∼ 3.2 days. These predictions carry considerable uncertainty, as more measurement data are needed to determine ambient concentrations and constrain the source strengths.
Journal Article