Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
19 result(s) for "Vergne, Jérôme"
Sort by:
Underplating in the Himalaya-Tibet Collision Zone Revealed by the Hi-CLIMB Experiment
We studied the formation of the Himalayan mountain range and the Tibetan Plateau by investigating their lithospheric structure. Using an 800-kilometer-long, densely spaced seismic array, we have constructed an image of the crust and upper mantle beneath the Himalayas and the southern Tibetan Plateau. The image reveals in a continuous fashion the Main Himalayan thrust fault as it extends from a shallow depth under Nepal to the mid-crust under southern Tibet. Indian crust can be traced to 31°N. The crust/mantle interface beneath Tibet is anisotropic, indicating shearing during its formation. The dipping mantle fabric suggests that the Indian mantle is subducting in a diffuse fashion along several evolving subparallel structures.
Induced and triggered seismicity below the city of Strasbourg, France from November 2019 to January 2021
Between November 2019 and January 2021, a series of seismic events were felt by the population of the city of Strasbourg, France. The first main event (MLv 3.0) that occurred on November 12, 2019, was part of a seismic swarm (the southern cluster) that has been initiated a few days before, lasted four months, and was located by the BCSF-Rénass (EOST), below La Robertsau area at a depth of 5 km. Its location in the vicinity of the deep geothermal wells (Geoven), the temporal correlation with the injection activity on site, the similarity of the depth between the bottom of the wells and the hypocenter of the event, the lack of local seismicity before the event occurrence, the known geological structures including crustal faults in the area, all strongly support the possible triggering of the events by the deep geothermal activities despite the relatively large distance (4–5 km). From template matching and double-difference relocations, a complex fault zone is evidenced in this southern cluster area that extends over 800 m. Focal mechanisms of the two largest events of the cluster are consistent with the known orientation of the main fault zone in the area. The regional stress field in combination with the fault orientation and a Coulomb failure criterion shows that the seismic cluster location is in an unstable domain, if the cohesion of the fault is weak, particularly sensitive to stress perturbations. In October 2020, after a new series of hydraulic tests, second cluster of seismic events with more felt earthquakes (the northern cluster) developed closer to the geothermal wells ( < 1 km) below the La Wantzenau area. It includes the largest event (MLv 3.6) that was induced on December 4, 2020, and caused the definitive arrest of the project. On January 22, 2021, three weeks after the shut-in of the wells, an MLv 3.3 event happened with the same location and focal mechanism. We propose here an extended seismotectonic analysis of both seismic clusters.
Characterization of ambient seismic noise near a deep geothermal reservoir and implications for interferometric methods: a case study in northern Alsace, France
Background Ambient noise correlation techniques are of growing interest for imaging and monitoring deep geothermal reservoirs. They are simple to implement and can be performed continuously to follow the evolution of the reservoir at low cost. However, these methods rely on assumptions of spatial and temporal uniformity of seismic noise sources. Violating them can result in misinterpretation of seismic velocities owing to preferential noise propagation directions. Methods Using several years of seismic data recorded around the two geothermal sites of Soultz-sous-forêts and Rittershoffen in northern Alsace, France, we propose a detailed characterization of the spatial and temporal properties of the high frequency seismic noise (0.2 to 5Hz). We consider two fundamental properties of the cross correlation functions (CCFs) of ambient noise. Firstly, the reliability of the Green's function reconstruction, an important indicator for tomographic studies. Secondly, the temporal repeatability of the CCFs between 0.2 and 0.5 seconds. Results and conclusions At periods below 1s, we observe a sharp decrease in signal to noise ratio resulting from the non uniform distribution of anthropogenic sources. At periods above 1s, we show that the high directivity of the northern Atlantic microseismic peak biases the CCFs' phase significantly. We show that nocturnal noise is the most suited for temporal analysis of the CCFs. Using nocturnal noise, we should be able to monitor temporal variations induced by the geothermal activities inside the reservoir.
Characteristics and possible origins of the seismicity in northwestern France
The macroseismic and instrumental observations accumulated by the Bureau Central Sismologique Français and other national agencies over the last 100 years show that the northwestern part of metropolitan France is affected by an apparently diffuse and moderate intraplate seismicity. Far from any plate boundary, well-documented inherited structures, such as the Armorican shear zone network, the Sillon Houiller, and the normal faults related to the Atlantic ocean margin, likely exert significant control on the regional seismicity pattern. However, in the absence of a clearly measurable strain field, processes other than far-field tectonic stress loading such as erosion, gravitational potential energy, and/or hydraulic loadings can co-exist, but their respective influence on the current seismicity is debated and remains to be fully addressed. Reliable detection/location of low-to-moderate magnitude events is one of the most important challenges in the near future to better understand the processes that control this intraplate seismicity. As shown here for a limited region, this issue can be achieved positively, thanks to the new Résif-Epos network, in conjunction with sophisticated algorithms for both earthquakes’ detection and discrimination.
Moho depths beneath the European Alps: a homogeneously processed map and receiver functions database
We use seismic waveform data from the AlpArray Seismic Network and three other temporary seismic networks, to perform receiver function (RF) calculations and time-to-depth migration to update the knowledge of the Moho discontinuity beneath the broader European Alps. In particular, we set up a homogeneous processing scheme to compute RFs using the time-domain iterative deconvolution method and apply consistent quality control to yield 112 205 high-quality RFs. We then perform time-to-depth migration in a newly implemented 3D spherical coordinate system using a European-scale reference P and S wave velocity model. This approach, together with the dense data coverage, provide us with a 3D migrated volume, from which we present migrated profiles that reflect the first-order crustal thickness structure. We create a detailed Moho map by manually picking the discontinuity in a set of orthogonal profiles covering the entire area. We make the RF dataset, the software for the entire processing workflow, as well as the Moho map, openly available; these open-access datasets and results will allow other researchers to build on the current study.
Modeling the Impact of Seasonal Water Table Fluctuations on Ambient Noise Interferometry Using Acousto‐Elastic Effect
Ambient noise interferometry has become a common technique for monitoring slight changes in seismic velocity in a variety of contexts. However, the physical origin of the resolved small velocity fluctuations is not well established for long‐term seasonal effects. Here we propose a physical forward model of scattered waves in a deformable medium that includes acousto‐elastic effect, which refers to non‐linear elasticity with third‐order elastic constants. The model shows that small pressure perturbations of a few kPa due to seasonal variations in the water table can induce seismic velocity changes compatible with those measured at the surface by ambient noise interferometry. The results are consistent with field observations near the deep geothermal site of Rittershoffen (France). They illustrate the capability in modeling the diffuse wavefield from scattering synthetic waves to reproduce ambient noise signals for monitoring environmental and/or deep reservoir signals. Plain Language Summary Monitoring the fine evolution of the Earth's crust either prior to catastrophic events such as earthquakes or landslides, or georesource exploitation, is an important objective for risk management. Ambient noise interferometry is one of the emerging tools for assessing the minute evolution of seismic velocities in the subsurface. However, the physical origin of the observed small velocity changes is not well established. Here we propose a physical model of scattered waves in a deformable medium that includes non‐linear elastic effects, which are not conventionally considered. The model shows that small pressure perturbations of a few kPa due to seasonal variations in the water table can induce seismic velocity changes compatible with those measured at the surface by ambient noise interferometry. The results are consistent with field observations near the deep geothermal site of Rittershoffen (France). They illustrate the capability in modeling scattered synthetic waves to reproduce ambient noise signals. Key Points We develop an acousto‐elastic model for seismic wave scattering in a deforming layered subsurface Stress fluctuations induced by seasonal water table variations are shown to be responsible for significant changes in seismic velocities The model is providing an interpretation tool for environmental monitoring signals obtained from ambient seismic noise
Seismic constraints on dynamic links between geomorphic processes and routing of sediment in a steep mountain catchment
Landscape dynamics are determined by interactions amongst geomorphic processes. These interactions allow the effects of tectonic, climatic and seismic perturbations to propagate across topographic domains, and permit the impacts of geomorphic process events to radiate from their point of origin. Visual remote sensing and in situ observations do not fully resolve the spatiotemporal patterns of surface processes in a landscape. As a result, the mechanisms and scales of geomorphic connectivity are poorly understood. Because many surface processes emit seismic signals, seismology can determine their type, location and timing with a resolution that reveals the operation of integral landscapes. Using seismic records, we show how hillslopes and channels in an Alpine catchment are interconnected to produce evolving, sediment-laden flows. This is done for a convective storm, which triggered a sequence of hillslope processes and debris flows. We observe the evolution of these process events and explore the operation of two-way links between mass wasting and channel processes, which are fundamental to the dynamics of most erosional landscapes. We also track the characteristics and propagation of flows along the debris flow channel, relating changes of observed energy to the deposition/mobilization of sediments, and using the spectral content of debris flow seismic signals to qualitatively infer sediment characteristics and channel abrasion potential. This seismological approach can help to test theoretical concepts of landscape dynamics and yield understanding of the nature and efficiency of links between individual geomorphic processes, which is required to accurately model landscape dynamics under changing tectonic or climatic conditions and to anticipate the natural hazard risk associated with specific meteorological events.
Active and passive seismic imaging of the central Abitibi greenstone belt, Larder Lake, Ontario
Passive seismic methods are considered as cost-effective and environmental-friendly alternatives to active (reflection) seismic methods. We have acquired co-located active and passive seismic surveys over a metal-endowed Archean granite-greenstone terrane in the Larder Lake area to investigate the reliability of the estimated elastic properties using the passive seismic methods. The passive seismic data was processed using two different data processing approaches, the ambient noise surface wave tomography (ANSWT) and receiver function analysis methods to generate shear-wave velocity and P- to S-wave (P-S) convertibility profiles of the subsurface, respectively. The Cadillac-Larder Lake Fault (CLLF) was imaged as a south-dipping sub-vertical zone of weak reflectivity in the reflection seismic profile. To the north of the CLLF, a package of north-dipping reflections in the upper-crust (at depths of 5-10 km) resides on the boundary of high (on the top) and low (on the bottom) shear-wave velocity zones estimated using the ANSWT method. This package of reflections is most likely caused by overlaying mafic volcanic and underlying felsic intrusive rocks. The P-S convertibility profile imaged the Moho boundary at ~40 km depth as well as a south-dipping slab that penetrates into the mantel which was interpreted to be either caused by the delamination of the lower crust or a possible deeper extension of the Porcupine-Destor Fault. Overall, the reflectivity, shear-wave velocity, and P-S convertibility profiles exhibited a good correlation and provided a detailed image of the subsurface lithological structure to a depth of 10 km.
Global quieting of high-frequency seismic noise due to COVID-19 pandemic lockdown measures
Human activity causes vibrations that propagate into the ground as high-frequency seismic waves. Measures to mitigate the coronavirus disease 2019 (COVID-19) pandemic caused widespread changes in human activity, leading to a months-long reduction in seismic noise of up to 50%. The 2020 seismic noise quiet period is the longest and most prominent global anthropogenic seismic noise reduction on record. Although the reduction is strongest at surface seismometers in populated areas, this seismic quiescence extends for many kilometers radially and hundreds of meters in depth. This quiet period provides an opportunity to detect subtle signals from subsurface seismic sources that would have been concealed in noisier times and to benchmark sources of anthropogenic noise. A strong correlation between seismic noise and independent measurements of human mobility suggests that seismology provides an absolute, real-time estimate of human activities.