Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
41 result(s) for "Verhagen, Judith M. A."
Sort by:
Expanding the phenotypic spectrum of variants in PDE4D/PRKAR1A: from acrodysostosis to acroscyphodysplasia
Acrodysostosis (MIM 101800) is a dominantly inherited condition associating (1) skeletal features (short stature, facial dysostosis, and brachydactyly with cone-shaped epiphyses), (2) resistance to hormones and (3) possible intellectual disability. Acroscyphodysplasia (MIM 250215) is characterized by growth retardation, brachydactyly, and knee epiphyses embedded in cup-shaped metaphyses. We and others have identified PDE4D or PRKAR1A variants in acrodysostosis; PDE4D variants have been reported in three cases of acroscyphodysplasia. Our study aimed at reviewing the clinical and molecular findings in a cohort of 27 acrodysostosis and 5 acroscyphodysplasia cases. Among the acrodysostosis cases, we identified 9 heterozygous de novo PRKAR1A variants and 11 heterozygous PDE4D variants. The 7 patients without variants presented with symptoms of acrodysostosis (brachydactyly and cone-shaped epiphyses), but none had the characteristic facial dysostosis. In the acroscyphodysplasia cases, we identified 2 PDE4D variants. For 2 of the 3 negative cases, medical records revealed early severe infection, which has been described in some reports of acroscyphodysplasia. Subdividing our series of acrodysostosis based on the disease-causing gene, we confirmed genotype–phenotype correlations. Hormone resistance was consistently observed in patients carrying PRKAR1A variants, whereas no hormone resistance was observed in 9 patients with PDE4D variants. All patients with PDE4D variants shared characteristic facial features (midface hypoplasia with nasal hypoplasia) and some degree of intellectual disability. Our findings of PDE4D variants in two cases of acroscyphodysplasia support that PDE4D may be responsible for this severe skeletal dysplasia. We eventually emphasize the importance of some specific assessments in the long-term follow up, including cardiovascular and thromboembolic risk factors.
Mutations in SMAD3 cause a syndromic form of aortic aneurysms and dissections with early-onset osteoarthritis
Aida Bertoli-Avella and colleagues report the identification of SMAD3 mutations in individuals with a syndromic form of aortic aneurysms and dissections with early-onset osteoarthritis. The mutations cause increased aortic expression of components of the TGF-β signaling pathway. Thoracic aortic aneurysms and dissections are a main feature of connective tissue disorders, such as Marfan syndrome and Loeys-Dietz syndrome. We delineated a new syndrome presenting with aneurysms, dissections and tortuosity throughout the arterial tree in association with mild craniofacial features and skeletal and cutaneous anomalies. In contrast with other aneurysm syndromes, most of these affected individuals presented with early-onset osteoarthritis. We mapped the genetic locus to chromosome 15q22.2–24.2 and show that the disease is caused by mutations in SMAD3 . This gene encodes a member of the TGF-β pathway that is essential for TGF-β signal transmission 1 , 2 , 3 . SMAD3 mutations lead to increased aortic expression of several key players in the TGF-β pathway, including SMAD3. Molecular diagnosis will allow early and reliable identification of cases and relatives at risk for major cardiovascular complications. Our findings endorse the TGF-β pathway as the primary pharmacological target for the development of new treatments for aortic aneurysms and osteoarthritis.
Accelerometry-defined physical activity and quality of life in hypertrophic cardiomyopathy
BackgroundPatients with hypertrophic cardiomyopathy (HCM) often reduce their physical activity due to concerns about sudden cardiac death. However, objective data on activity patterns in HCM, particularly in relation to clinical phenotype and quality of life (QoL), remain limited.MethodsWe assessed physical activity using 7-day accelerometry in 203 patients with HCM and 37 genotype-positive, phenotype-negative (G+/P−) individuals. Outcomes included daily step counts, time spent in moderate-to-vigorous physical activity (MVPA) and sedentariness. QoL was measured using the Kansas City Cardiomyopathy Questionnaire (KCCQ) and the EuroQoL 5-domain 5-level (EQ-5D-5L).ResultsHCM patients took fewer steps/day (5254 vs 6573), engaged in less MVPA (3.4% vs 4.5% of the day) and were more often sedentary (61% vs 35% spending >80% of the day sedentary) compared with G+/P− controls (all p<0.01). Symptomatic and obstructive HCM patients showed the lowest activity levels. Notably, asymptomatic obstructive HCM patients demonstrated reduced activity comparable to symptomatic individuals. Obesity and use of cardiac medications were also associated with lower activity. Step counts were positively associated with QoL scores: a 250 steps/day increment corresponded to a 2.15-point higher KCCQ score and a 1000 steps/day increment to a 0.05-point higher EQ-5D-5L score (both p<0.001), remaining significant after adjustment for age and sex. Most HCM patients (62%) recalled receiving exercise guidance, and many (59%) reported reducing their activity as a result.ConclusionsObjectively measured physical activity was significantly lower in HCM patients compared with G+/P− individuals, particularly among those with symptoms, obstruction or obesity. Even modestly higher daily step counts were associated with better QoL, highlighting the relevance of individualised, phenotype-informed exercise counselling in HCM.
Sudden cardiac arrest in infants and children: proposal for a diagnostic workup to identify the etiology. An 18-year multicenter evaluation in the Netherlands
Sudden cardiac arrest (SCA) studies are often population-based, limited to sudden cardiac death, and excluding infants. To guide prevention opportunities, it is essential to be informed of pediatric SCA etiologies. Unfortunately, etiologies frequently remain unresolved. The objectives of this study were to determine paediatric SCA etiology, and to evaluate the extent of post-SCA investigations and to assess the performance of previous cardiac evaluation in detecting conditions predisposing to SCA. In a retrospective cohort (2002–2019), all children 0–18 years with out-of-hospital cardiac arrest (OHCA) referred to Erasmus MC Sophia Children's Hospital or the Amsterdam UMC (tertiary-care university hospitals), with cardiac or unresolved etiologies were eligible for inclusion. SCA etiologies, cardiac and family history and etiologic investigations in unresolved cases were assessed. The etiology of arrest could be determined in 52% of 172 cases. Predominant etiologies in children ≥ 1 year (n = 99) were primary arrhythmogenic disorders (34%), cardiomyopathies (22%) and unresolved (32%). Events in children < 1 year (n = 73) were largely unresolved (70%) or caused by cardiomyopathy (8%), congenital heart anomaly (8%) or myocarditis (7%). Of 83 children with unresolved etiology a family history was performed in 51%, an autopsy in 51% and genetic testing in 15%. Pre-existing cardiac conditions presumably causative for SCA were diagnosed in 9%, and remained unrecognized despite prior evaluation in 13%. Conclusion : SCA etiology remained unresolved in 83 of 172 cases (48%) and essential diagnostic investigations were often not performed. Over one-fifth of SCA patients underwent prior cardiac evaluation, which did not lead to recognition of a cardiac condition predisposing to SCA in all of them. The diagnostic post-SCA approach should be improved and the proposed standardized pediatric post-SCA diagnostics protocol may ensure a consistent and systematic evaluation process increasing the diagnostic yield. What is Known: • Arrests in infants remain unresolved in most cases. In children > 1 year, predominant etiologies are primary arrhythmia disorders, cardiomyopathy and myocarditis. • Studies investigating sudden cardiac arrest are often limited to sudden cardiac death (SCD) in 1 to 40 year old persons, excluding infants and successfully resuscitated children. What is New: • In patients with unresolved SCA events, the diagnostic work up was often incompletely performed. • Over one fifth of victims had prior cardiac evaluation before the arrest, with either a diagnosed cardiac condition (9%) or an unrecognized cardiac condition (13%). Graphical Abstract
Expanding the clinical and genetic spectrum of ALPK3 variants: Phenotypes identified in pediatric cardiomyopathy patients and adults with heterozygous variants
Biallelic damaging variants in ALPK3, encoding alpha-protein kinase 3, cause pediatric-onset cardiomyopathy with manifestations that are incompletely defined. We analyzed clinical manifestations of damaging biallelic ALPK3 variants in 19 pediatric patients, including nine previously published cases. Among these, 11 loss-of-function (LoF) variants, seven compound LoF and deleterious missense variants, and one homozygous deleterious missense variant were identified. Among 18 live-born patients, 8 exhibited neonatal dilated cardiomyopathy (44.4%; 95% CI: 21.5%-69.2%) that subsequently transitioned into ventricular hypertrophy. The majority of patients had extracardiac phenotypes, including contractures, scoliosis, cleft palate, and facial dysmorphisms. We observed no association between variant type or location, disease severity, and/or extracardiac manifestations. Myocardial histopathology showed focal cardiomyocyte hypertrophy, subendocardial fibroelastosis in patients under 4 years of age, and myofibrillar disarray in adults. Rare heterozygous ALPK3 variants were also assessed in adult-onset cardiomyopathy patients. Among 1548 Dutch patients referred for initial genetic analyses, we identified 39 individuals with rare heterozygous ALPK3 variants (2.5%; 95% CI: 1.8%-3.4%), including 26 missense and 10 LoF variants. Among 149 U.S. patients without pathogenic variants in 83 cardiomyopathy-related genes, we identified six missense and nine LoF ALPK3 variants (10.1%; 95% CI: 5.7%-16.1%). LoF ALPK3 variants were increased in comparison to matched controls (Dutch cohort, P = 1.6×10−5; U.S. cohort, P = 2.2×10−13). Biallelic damaging ALPK3 variants cause pediatric cardiomyopathy manifested by DCM transitioning to hypertrophy, often with poor contractile function. Additional extracardiac features occur in most patients, including musculoskeletal abnormalities and cleft palate. Heterozygous LoF ALPK3 variants are enriched in adults with cardiomyopathy and may contribute to their cardiomyopathy. Adults with ALPK3 LoF variants therefore warrant evaluations for cardiomyopathy.
Homozygous damaging SOD2 variant causes lethal neonatal dilated cardiomyopathy
BackgroundIdiopathic dilated cardiomyopathy (DCM) is recognised to be a heritable disorder, yet clinical genetic testing does not produce a diagnosis in >50% of paediatric patients. Identifying a genetic cause is crucial because this knowledge can affect management options, cardiac surveillance in relatives and reproductive decision-making. In this study, we sought to identify the underlying genetic defect in a patient born to consanguineous parents with rapidly progressive DCM that led to death in early infancy.Methods and resultsExome sequencing revealed a potentially pathogenic, homozygous missense variant, c.542G>T, p.(Gly181Val), in SOD2. This gene encodes superoxide dismutase 2 (SOD2) or manganese-superoxide dismutase, a mitochondrial matrix protein that scavenges oxygen radicals produced by oxidation-reduction and electron transport reactions occurring in mitochondria via conversion of superoxide anion (O2 –·) into H2O2. Measurement of hydroethidine oxidation showed a significant increase in O2 −· levels in the patient’s skin fibroblasts, as compared with controls, and this was paralleled by reduced catalytic activity of SOD2 in patient fibroblasts and muscle. Lentiviral complementation experiments demonstrated that mitochondrial SOD2 activity could be completely restored on transduction with wild type SOD2.ConclusionOur results provide evidence that defective SOD2 may lead to toxic increases in the levels of damaging oxygen radicals in the neonatal heart, which can result in rapidly developing heart failure and death. We propose SOD2 as a novel nuclear-encoded mitochondrial protein involved in severe human neonatal cardiomyopathy, thus expanding the wide range of genetic factors involved in paediatric cardiomyopathies.
Implantable loop recorders in patients with heart disease: comparison between patients with and without syncope
ObjectivePatients with heart disease are at increased risk for sudden cardiac death. Guidelines recommend an implantable loop recorder (ILR) for symptomatic patients when symptoms are sporadic and possibly arrhythmia-related. In clinical practice, an ILR is mainly used in patients with unexplained syncope. We aimed to compare the clinical value of an ILR in patients with heart disease and a history of syncope versus those with non-syncopal symptoms.MethodsIn this observational single-centre study, we included symptomatic patients with heart disease who received an ILR. The primary endpoint was an actionable event which was defined as an arrhythmic event leading to a change in clinical management. The secondary endpoint was an event leading to device implantation.ResultsOne hundred and twenty patients (mean age 47±17 years, 49% men) were included. The underlying disease substrate was inherited cardiomyopathy (31%), congenital heart disease (28%), channelopathy (23%) and other (18%). Group A consisted of 43 patients with prior syncope and group B consisted of 77 patients with palpitations and/or near-syncope. The median follow-up duration was 19 months (IQR 8–36). The 3-year cumulative event rate was similar between groups with regard to the primary endpoint (38% vs 39% for group A and B, respectively, logrank p=0.54). There was also no difference in the 3-year cumulative rate of device implantation (21% vs 13% for group A and B, respectively, logrank p=0.65).ConclusionIn symptomatic patients with heart disease, there is no difference in the yield of an ILR in patients presenting with or without syncope.
ROBO4 variants predispose individuals to bicuspid aortic valve and thoracic aortic aneurysm
Bicuspid aortic valve (BAV) is a common congenital heart defect (population incidence, 1–2%) 1 – 3 that frequently presents with ascending aortic aneurysm (AscAA) 4 . BAV/AscAA shows autosomal dominant inheritance with incomplete penetrance and male predominance. Causative gene mutations (for example, NOTCH1 , SMAD6 ) are known for ≤1% of nonsyndromic BAV cases with and without AscAA 5 – 8 , impeding mechanistic insight and development of therapeutic strategies. Here, we report the identification of variants in ROBO4 (which encodes a factor known to contribute to endothelial performance) that segregate with disease in two families. Targeted sequencing of ROBO4 showed enrichment for rare variants in BAV/AscAA probands compared with controls. Targeted silencing of ROBO4 or mutant ROBO4 expression in endothelial cell lines results in impaired barrier function and a synthetic repertoire suggestive of endothelial-to-mesenchymal transition. This is consistent with BAV/AscAA-associated findings in patients and in animal models deficient for ROBO4. These data identify a novel endothelial etiology for this common human disease phenotype. Individuals with biscuspid aortic valve and ascending aortic aneurysm show enrichment of rare variants in ROBO4 . Functional studies suggest that ROBO4 mutations disrupt endothelial cell performance and contribute to pathological remodeling of aortic tissues.
Cardiovascular malformations caused by NOTCH1 mutations do not keep left: data on 428 probands with left-sided CHD and their families
Purpose: We aimed to determine the prevalence and phenotypic spectrum of NOTCH1 mutations in left-sided congenital heart disease (LS-CHD). LS-CHD includes aortic valve stenosis, a bicuspid aortic valve, coarctation of the aorta, and hypoplastic left heart syndrome. Methods: NOTCH1 was screened for mutations in 428 nonsyndromic probands with LS-CHD, and family histories were obtained for all. When a mutation was detected, relatives were also tested. Results: In 148/428 patients (35%), LS-CHD was familial. Fourteen mutations (3%; 5 RNA splicing mutations, 8 truncating mutations, 1 whole-gene deletion) were detected, 11 in familial disease (11/148 (7%)) and 3 in sporadic disease (3/280 (1%)). Forty-nine additional mutation carriers were identified among the 14 families, of whom 12 (25%) were asymptomatic. Most of these mutation carriers had LS-CHD, but 9 (18%) had right-sided congenital heart disease (RS-CHD) or conotruncal heart disease (CTD). Thoracic aortic aneurysms (TAAs) occurred in 6 mutation carriers (probands included 6/63 (10%)). Conclusion: Pathogenic mutations in NOTCH1 were identified in 7% of familial LS-CHD and in 1% of sporadic LS-CHD. The penetrance is high; a cardiovascular malformation was found in 75% of NOTCH1 mutation carriers. The phenotypic spectrum includes LS-CHD, RS-CHD, CTD, and TAA. Testing NOTCH1 for an early diagnosis in LS-CHD/RS-CHD/CTD/TAA is warranted. Genet Med 18 9, 914–923.
Sexual dimorphism in SMAD3 pathogenic variant-harbouring individuals
BackgroundIndividuals harbouring SMAD3 pathogenic variants are at risk for aneurysms/dissections throughout the arterial tree. Based on prior reports of sex differences in thoracic aortic aneurysm/dissection, we investigated the sexual dimorphism for vascular events in SMAD3-variant-harbouring patients.MethodsWe analysed two large pedigrees comprising 84 individuals segregating pathogenic missense variants affecting the same p.Arg287 residue in SMAD3. We excluded individuals<40 years without vascular involvement, as they were too young to be classified. Individuals were subcategorised according to sex, the presence or absence and localisation (aneurysm/dissection with or without involvement of the aortic root/ascending aorta) of vascular lesions. We complemented our familial patient cohort with 178 SMAD3 patients reported in the literature between 2011 and 2023.ResultsIn our two pedigrees, 11/30 (37%) variant-harbouring females had no vascular involvement, whereas none of the variant-harboring males (n=23) had no vascular involvement (p=0.001). While the two groups did not differ by age, males were at higher risk of vascular complications (p=0.037), there was no age difference between sexes. Of the 19 females with vascular involvement, six (32%) had vascular involvment sparing the aortic root/ascending aorta, whereas of the 23 males with vascular invovlement, only one (4%) had vascular involvement sparing the aortic root/ascending aorta (p=0.034). In the literature, we identified 116 male and 62 female additional patients. In the combined cohort of 220 patients, we demonstrated an over-representation of males (p<0.001) and non-penetrance in females for vascular pathology involving the aortic root/ascending aorta (p=0.028).ConclusionsNon-penetrance is more common in women, and normal echocardiography in at-risk females is not as reassuring for risk of vasculopathy in other locations. The higher non-penetrance in women creates an ascertainment bias and results in an over-representation of male patients in the literature.