Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
101 result(s) for "Verikoukis, Christos"
Sort by:
Smart HVAC Control in IoT: Energy Consumption Minimization with User Comfort Constraints
Smart grid is one of the main applications of the Internet of Things (IoT) paradigm. Within this context, this paper addresses the efficient energy consumption managementof heating, ventilation, and air conditioning (HVAC) systems in smart grids with variable energy price. To that end, first, we propose an energy scheduling method that minimizes the energy consumption cost for a particular time interval, taking into account the energy price and a set of comfort constraints, that is, a range of temperatures according to user’s preferences for a given room. Then, we propose an energy scheduler where the user may select to relax the temperature constraints to save more energy. Moreover, thanks to the IoT paradigm, the user may interact remotely with the HVAC control system. In particular, the user may decide remotely the temperature of comfort, while the temperature and energy consumption information is sent through Internet and displayed at the end user’s device. The proposed algorithms have been implemented in a real testbed, highlighting the potential gains that can be achieved in terms of both energy and cost.
Cooperative Energy Harvesting-Adaptive MAC Protocol for WBANs
In this paper, we introduce a cooperative medium access control (MAC) protocol, named cooperative energy harvesting (CEH)-MAC, that adapts its operation to the energy harvesting (EH) conditions in wireless body area networks (WBANs). In particular, the proposed protocol exploits the EH information in order to set an idle time that allows the relay nodes to charge their batteries and complete the cooperation phase successfully. Extensive simulations have shown that CEH-MAC significantly improves the network performance in terms of throughput, delay and energy efficiency compared to the cooperative operation of the baseline IEEE 802.15.6 standard.
A Cloud-Assisted Random Linear Network Coding Medium Access Control Protocol for Healthcare Applications
Relay sensor networks are often employed in end-to-end healthcare applications to facilitate the information flow between patient worn sensors and the medical data center. Medium access control (MAC) protocols, based on random linear network coding (RLNC), are a novel and suitable approach to efficiently handle data dissemination. However, several challenges arise, such as additional delays introduced by the intermediate relay nodes and decoding failures, due to channel errors. In this paper, we tackle these issues by adopting a cloud architecture where the set of relays is connected to a coordinating entity, called cloud manager. We propose a cloud-assisted RLNC-based MAC protocol (CLNC-MAC) and develop a mathematical model for the calculation of the key performance metrics, namely the system throughput, the mean completion time for data delivery and the energy efficiency. We show the importance of central coordination in fully exploiting the gain of RLNC under error-prone channels.
Green Communications
The steady rise of power cost in combination with regulatory initiatives and government policies are driving academia and industry towards energy-efficient solutions for ICT (Information and Communication Technologies). Mobile and fixed networks progressively handle bigger volumes of data, driven by the emerging user devices, multimedia, social and cloud services; the mass connectivity of ubiquitous communicating things and the flat rate charging models, causing a continuous need for network infrastructure enhancement, which also has to accommodate higher speeds and reliability, causing network operators difficulties in securing profits. Green or energy efficient communications is the means to reduce the cost of telecommunication services, whilst introducing social responsibility, helping network operators to be environmentally friendly. This book examines specific mechanisms concerning wireless and fixed communication networks as well as all network layers of a telecommunication network emphasizing a system perspective, providing a comprehensive view of green communications considering the main principles and practice, documenting the industry view and standardization as well. Energy efficiency will gain even more importance over the next decade mainly due to the emerging 5G, converged networks and cloud networking, and it will be established as a key factor for economic growth in developing countries. This timely book introduces general concepts, measures and objectives, aiming to stimulate future research in green communications, which can influence the development of new approaches based on holistic and systems perspective. • Provides a holistic view on this increasingly important topic in communications, as research into energy-efficiency across ICT gains momentum • Gives an overview of basic concepts, approaches and metrics applicable to various telecommunication systems • Draws out the key principles of the topic before articulating the issues within the wireless and fixed domain, highlighting synergies between the two.
Network-Coding-Based Cooperative ARQ Medium Access Control Protocol for Wireless Sensor Networks
We introduce a novel Medium Access Control (MAC) protocol for Automatic Repeat reQuest-based (ARQ-based) cooperative wireless sensor networks. Using network coding techniques, we achieve a better network performance in terms of energy efficiency without compromising the offered Quality of Service (QoS). The proposed solution is compared to other cooperative schemes, while analytical and simulation results are provided to evaluate our protocol.
Ubiquitous robust communications for emergency response using multi-operator heterogeneous networks
A number of disasters in various places of the planet have caused an extensive loss of lives, severe damages to properties and the environment, as well as a tremendous shock to the survivors. For relief and mitigation operations, emergency responders are immediately dispatched to the disaster areas. Ubiquitous and robust communications during the emergency response operations are of paramount importance. Nevertheless, various reports have highlighted that after many devastating events, the current technologies used, failed to support the mission critical communications, resulting in further loss of lives. Inefficiencies of the current communications used for emergency response include lack of technology inter-operability between different jurisdictions, and high vulnerability due to their centralized infrastructure. In this article, we propose a flexible network architecture that provides a common networking platform for heterogeneous multi-operator networks, for interoperation in case of emergencies. A wireless mesh network is the main part of the proposed architecture and this provides a back-up network in case of emergencies. We first describe the shortcomings and limitations of the current technologies, and then we address issues related to the applications and functionalities a future emergency response network should support. Furthermore, we describe the necessary requirements for a flexible, secure, robust, and QoS-aware emergency response multi-operator architecture, and then we suggest several schemes that can be adopted by our proposed architecture to meet those requirements. In addition, we suggest several methods for the re-tasking of communication means owned by independent individuals to provide support during emergencies. In order to investigate the feasibility of multimedia transmission over a wireless mesh network, we measured the performance of a video streaming application in a real wireless metropolitan multi-radio mesh network, showing that the mesh network can meet the requirements for high quality video transmissions.
Energy-Efficiency Analysis of a Distributed Queuing Medium Access Control Protocol for Biomedical Wireless Sensor Networks in Saturation Conditions
The aging population and the high quality of life expectations in our society lead to the need of more efficient and affordable healthcare solutions. For this reason, this paper aims for the optimization of Medium Access Control (MAC) protocols for biomedical wireless sensor networks or wireless Body Sensor Networks (BSNs). The hereby presented schemes always have in mind the efficient management of channel resources and the overall minimization of sensors’ energy consumption in order to prolong sensors’ battery life. The fact that the IEEE 802.15.4 MAC does not fully satisfy BSN requirements highlights the need for the design of new scalable MAC solutions, which guarantee low-power consumption to the maximum number of body sensors in high density areas (i.e., in saturation conditions). In order to emphasize IEEE 802.15.4 MAC limitations, this article presents a detailed overview of this de facto standard for Wireless Sensor Networks (WSNs), which serves as a link for the introduction and initial description of our here proposed Distributed Queuing (DQ) MAC protocol for BSN scenarios. Within this framework, an extensive DQ MAC energy-consumption analysis in saturation conditions is presented to be able to evaluate its performance in relation to IEEE 802.5.4 MAC in highly dense BSNs. The obtained results show that the proposed scheme outperforms IEEE 802.15.4 MAC in average energy consumption per information bit, thus providing a better overall performance that scales appropriately to BSNs under high traffic conditions. These benefits are obtained by eliminating back-off periods and collisions in data packet transmissions, while minimizing the control overhead.
Delay analysis of converged optical-wireless networks with quality of service support
The convergence of two popular access technologies, namely Worldwide interoperability for Microwave Access (WiMAX) and passive optical network (PON) is a promising access solution that combines the mobility feature of WiMAX and the ample bandwidth of PONs. In such a converged optical-wireless access network, the provision of quality of service (QoS) support is a challenging issue, mainly because of the different bandwidth allocation mechanisms of the two access technologies. Since the considered convergence seems to be dominant, it deserves assiduous analysis and evaluation. In this study, the authors investigate the delay performance of a converged optical-wireless network that provides QoS support by considering multiple service-classes with different priorities. In the wireless domain, the IEEE 802.16 standard is applied, whereas in the optical domain a wavelength division multiplexing ethernet PON provides connectivity to both wired and wireless users. The authors present an analytical framework for the calculation of the average end-to-end packet delay of each service-class, by developing two queuing models for each domain of the converged network. The end-to-end delay is calculated as the sum of the queuing delay in both domains, and the transmission and propagation delay in the optical domain. The accuracy of the proposed analysis has been verified by simulation and found to be quite satisfactory.
A QoS-Based Dynamic Queue Length Scheduling Algorithm in Multiantenna Heterogeneous Systems
The use of real-time delay-sensitive applications in wireless systems has significantly grown during the last years. Therefore the designers of wireless systems have faced a challenging issue to guarantee the required Quality of Service (QoS). On the other hand, the recent advances and the extensive use of multiple antennas have already been included in several commercial standards, where the multibeam opportunistic transmission beamforming strategies have been proposed to improve the performance of the wireless systems. A cross-layer-based dynamically tuned queue length scheduler is presented in this paper, for the Downlink of multiuser and multiantenna WLAN systems with heterogeneous traffic requirements. To align with modern wireless systems transmission strategies, an opportunistic scheduling algorithm is employed, while a priority to the different traffic classes is applied. A tradeoff between the maximization of the throughput of the system and the guarantee of the maximum allowed delay is obtained. Therefore, the length of the queue is dynamically adjusted to select the appropriate conditions based on the operator requirements.
Design and Analysis of an Energy-Saving Distributed MAC Mechanism for Wireless Body Sensor Networks
The fact that the IEEE 802.15.4 MAC does not fully satisfy the strict wireless body sensor network (BSN) requirements in healthcare systems highlights the need for the design and analysis of new scalable MAC solutions, which guarantee low power consumption to all specific sorts of body sensors and traffic loads. While taking the challenging healthcare requirements into account, this paper aims for the study of energy consumption in BSN scenarios. For that purpose, the IEEE 802.15.4 MAC limitations are first examined, and other potential MAC layer alternatives are further explored. Our intent is to introduce energy-aware radio activation polices into a high-performance distributed queuing medium access control (DQ-MAC) protocol and evaluate its energy-saving achievements, as a function of the network load and the packet length. To do so, a fundamental energy-efficiency theoretical analysis for DQ-MAC protocols is hereby for the first time provided. By means of computer simulations, its performance is validated using IEEE 802.15.4 MAC system parameters.