Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
127 result(s) for "Vermeulen, Peter B"
Sort by:
Angiotropism, pericytic mimicry and extravascular migratory metastasis: an embryogenesis-derived program of tumor spread
Intravascular dissemination of tumor cells is the accepted mechanism of cancer metastasis. However, the phenomenon of angiotropism, pericyte mimicry (PM), and extravascular migratory metastasis (EVMM) has questioned the concept that tumor cells metastasize exclusively via circulation within vascular channels. This new paradigm of cancer spread and metastasis suggests that metastatic cells employ embryonic mechanisms for attachment to the abluminal surfaces of blood vessels (angiotropism) and spread via continuous migration, competing with and replacing pericytes, i.e., pericyte mimicry (PM). This is an entirely extravascular phenomenon (i.e., extravascular migratory metastasis or EVMM) without entry (intravasation) into vascular channels. PM and EVMM have mainly been studied in melanoma but also occur in other cancer types. PM and EVMM appear to be a reversion to an embryogenesis-derived program. There are many analogies between embryogenesis and cancer progression, including the important role of laminins, epithelial–mesenchymal transition, and the re-activation of embryonic signals by cancer cells. Furthermore, there is no circulation of blood during the first trimester of embryogenesis, despite the fact that there is extensive migration of cells to distant sites and formation of organs and tissues during this period. Embryonic migration therefore is a continuous extravascular migration as are PM and EVMM, supporting the concept that these embryonic migratory events appear to recur abnormally during the metastatic process. Finally, the perivascular location of tumor cells intrinsically links PM to vascular co-option. Taken together, these two new paradigms may greatly influence the development of new effective therapeutics for metastasis. In particular, targeting embryonic factors linked to migration that are detected during cancer metastasis may be particularly relevant to PM/EVMM.
Development and Validation of a Histological Method to Measure Microvessel Density in Whole-Slide Images of Cancer Tissue
Despite all efforts made to develop predictive biomarkers for antiangiogenic therapies, no unambiguous markers have been identified so far. This is due to among others the lack of standardized tests. This study presents an improved microvessel density quantification method in tumor tissue based on stereological principles and using whole-slide images. Vessels in tissue sections of different cancer types were stained for CD31 by an automated and validated immunohistochemical staining method. The stained slides were digitized with a digital slide scanner. Systematic, uniform, random sampling of the regions of interest on the whole-slide images was performed semi-automatically with the previously published applications AutoTag and AutoSnap. Subsequently, an unbiased counting grid was combined with the images generated with these scripts. Up to six independent observers counted microvessels in up to four cancer types: colorectal carcinoma, glioblastoma multiforme, ovarian carcinoma and renal cell carcinoma. At first, inter-observer variability was found to be unacceptable. However, after a series of consensus training sessions and interim statistical analysis, counting rules were modified and inter-observer concordance improved considerably. Every CD31-positive object was counted, with exclusion of suspected CD31-positive monocytes, macrophages and tumor cells. Furthermore, if interconnected, stained objects were considered a single vessel. Ten regions of interest were sufficient for accurate microvessel density measurements. Intra-observer and inter-observer variability were low (intraclass correlation coefficient > 0.7) if the observers were adequately trained.
An idiosyncratic zonated stroma encapsulates desmoplastic liver metastases and originates from injured liver
A perimetastatic capsule is a strong positive prognostic factor in liver metastases, but its origin remains unclear. Here, we systematically quantify the capsule’s extent and cellular composition in 263 patients with colorectal cancer liver metastases to investigate its clinical significance and origin. We show that survival improves proportionally with increasing encapsulation and decreasing tumor-hepatocyte contact. Immunostaining reveals the gradual zonation of the capsule, transitioning from benign-like NGFR high stroma at the liver edge to FAP high stroma towards the tumor. Encapsulation correlates with decreased tumor viability and preoperative chemotherapy. In mice, chemotherapy and tumor cell ablation induce capsule formation. Our results suggest that encapsulation develops where tumor invasion into the liver plates stalls, representing a reparative process rather than tumor-induced desmoplasia. We propose a model of metastases growth, where the efficient tumor colonization of the liver parenchyma and a reparative liver injury reaction are opposing determinants of metastasis aggressiveness. Cancer liver metastases can be encapsulated by a fibrotic stroma. Here the authors use digital pathology to generate spatial growth pattern maps of colorectal cancer liver metastasis and show that prognosis depends on the degree of fibrotic encapsulation.
Distinguishing pure histopathological growth patterns of colorectal liver metastases on CT using deep learning and radiomics: a pilot study
Histopathological growth patterns (HGPs) are independent prognosticators for colorectal liver metastases (CRLM). Currently, HGPs are determined postoperatively. In this study, we evaluated radiomics for preoperative prediction of HGPs on computed tomography (CT), and its robustness to segmentation and acquisition variations. Patients with pure HGPs [i.e. 100% desmoplastic (dHGP) or 100% replacement (rHGP)] and a CT-scan who were surgically treated at the Erasmus MC between 2003–2015 were included retrospectively. Each lesion was segmented by three clinicians and a convolutional neural network (CNN). A prediction model was created using 564 radiomics features and a combination of machine learning approaches by training on the clinician’s and testing on the unseen CNN segmentations. The intra-class correlation coefficient (ICC) was used to select features robust to segmentation variations; ComBat was used to harmonize for acquisition variations. Evaluation was performed through a 100 × random-split cross-validation. The study included 93 CRLM in 76 patients (48% dHGP; 52% rHGP). Despite substantial differences between the segmentations of the three clinicians and the CNN, the radiomics model had a mean area under the curve of 0.69. ICC-based feature selection or ComBat yielded no improvement. Concluding, the combination of a CNN for segmentation and radiomics for classification has potential for automatically distinguishing dHGPs from rHGP, and is robust to segmentation and acquisition variations. Pending further optimization, including extension to mixed HGPs, our model may serve as a preoperative addition to postoperative HGP assessment, enabling further exploitation of HGPs as a biomarker.
The relationship between primary colorectal cancer histology and the histopathological growth patterns of corresponding liver metastases
Background The histopathological growth patterns (HGPs) are a prognostic and predictive biomarker in colorectal cancer liver metastasis (CRLM). This study evaluates the relationship between the HGP and primary colorectal cancer (CRC) histopathology. Methods A total of 183 treatment-naive patients with resected CRC and CRLM were included. Thirteen CRC histopathology markers were determined and compared between the desmoplastic and non-desmoplastic HGP; tumour sidedness, pT&pN stage, tumour grade, tumour deposits, perineural- (lympho-)vascular- and extramural venous invasion, peritumoural budding, stroma type, CRC growth pattern, Crohn’s-like lymphoid reaction, and tumour-infiltrating lymphocyte (TIL) density. Logistic regression analysis was performed using both CRC and CRLM characteristics. Results Unfavourable CRC histopathology was more frequent in non-desmoplastic CRLM for all markers evaluated, and significantly so for a lower TIL density, absent Crohn’s-like lymphoid reaction, and a “non-mature” stroma (all p  < 0.03). The cumulative prevalence of unfavourable CRC histopathology was significantly higher in patients with non-desmoplastic compared to desmoplastic CRLM, with a median (IQR) of 4 (3–6) vs 2 (1–3.5) unfavourable characteristics observed, respectively ( p  < 0.001). Multivariable regression with 9 CRC histopathology markers and 2 CRLM characteristics achieved good discriminatory performance (AUC = 0.83). Conclusions The results of this study associates primary CRC histopathology with the HGP of corresponding liver metastases.
Vessel co-option in cancer
All solid tumours require a vascular supply in order to progress. Although the ability to induce angiogenesis (new blood vessel growth) has long been regarded as essential to this purpose, thus far, anti-angiogenic therapies have shown only modest efficacy in patients. Importantly, overshadowed by the literature on tumour angiogenesis is a long-standing, but continually emerging, body of research indicating that tumours can grow instead by hijacking pre-existing blood vessels of the surrounding nonmalignant tissue. This process, termed vessel co-option, is a frequently overlooked mechanism of tumour vascularization that can influence disease progression, metastasis and response to treatment. In this Review, we describe the evidence that tumours located at numerous anatomical sites can exploit vessel co-option. We also discuss the proposed molecular mechanisms involved and the multifaceted implications of vessel co-option for patient outcomes.Despite much hope, anti-angiogenic agents have largely failed to achieve the promise demonstrated in preclinical models. In this Review, the authors discuss an alternative hypothesis — vessel co-option — that might explain many of these failures and describe the evidence for a role of this largely overlooked aspect of tumour biology.
The histological growth pattern of colorectal cancer liver metastases has prognostic value
Little is known about the biological characteristics that determine the prognosis of colorectal cancer (CRC) liver metastases. In previous work we reported three different histological patterns of the tumour-liver interface of CRC liver metastases, termed the pushing, replacement and desmoplastic growth pattern (GP). The purpose of this study was to confirm differences in angiogenic and hypoxic properties of CRC liver metastases with different GPs in a large data set and to study the value of the GP as a prognostic factor. In 205 patients undergoing a resection of CRC liver metastases, the GP of the metastasis was determined using haematoxylin-eosin and Gordon Sweet’s silver staining. The tumour cell proliferation fraction (TCP%), endothelial cell proliferation fraction (ECP%) and carbonic anhydrase 9 (CA9) expression were determined using immunohistochemistry. Standard clinicopathological data and overall survival were recorded. 27.8, 15.6, 34.6 and 17.6 % of liver metastases had a replacement, pushing, desmoplastic and mixed GP, respectively. Analyses of TCP%, ECP% and CA9 expression demonstrated that CRC liver metastases with a replacement GP are non-angiogenic, while the ones with a pushing GP are the most angiogenic with angiogenesis being, at least partially, hypoxia-driven. GP (pushing or not) was the only independent predictor of survival at 2 years. CRC liver metastases grow according to different GP patterns with different angiogenic properties. At 2 years of follow-up a GP with a pushing component was an independent predictor of poor survival, suggesting that the pushing GP is characterized by a more aggressive tumour biology. Further elucidation of the mechanisms and biological pathways involved in and responsible for the differences in GP between CRC liver metastases in different patients might lead to therapeutic agents and strategies taking advantage of this 2 year ‘window of opportunity’.
Preoperative systemic chemotherapy alters the histopathological growth patterns of colorectal liver metastases
Histopathological growth patterns (HGPs) are a reliable, reproducible, and strong prognostic biomarker that can be assessed on haematoxylin and eosin‐stained sections of resected colorectal liver metastases (CRLM). Assessment estimates the relative fraction of the tumour–liver interface for each of the three growth patterns; the desmoplastic HGP reflects good prognosis. Whether preoperative chemotherapy affects the HGP is currently unclear. The present international multicentre study evaluates this in an original cohort of 877 consecutive patients treated in the Netherlands, an external validation cohort of 1,203 consecutive patients treated in the USA, and a post hoc analysis from the phase III randomised controlled European Organization for Research and Treatment of Cancer (EORTC) 40983 trial (n = 70). All patients underwent resection of CRLM with or without preoperative systemic chemotherapy. Trial patients were randomised between perioperative chemotherapy and resection or resection alone. HGPs were determined according to consensus guidelines and compared for preoperative treatment status. Data from three separate tumour regression grading systems were available for the trial cohort. These were correlated with HGP stratified for treatment arm. In the original cohort, the average presence of desmoplastic HGP was 43% for chemo‐naïve versus 67% for preoperatively treated patients (p < 0.001). A significant association between chemotherapy and desmoplastic HGP was found on multivariable analysis (β [95% confidence interval, CI]: 24.57 [18.28–30.87], p < 0.001). In the validation cohort, the average presence of desmoplastic HGP was 40% for chemo‐naïve versus 63% for preoperatively treated patients (p < 0.001). This association remained on multivariable analysis (β [95% CI]: 24.18 [18.70–29.66], p < 0.001). In the EORTC 40983 trial, the average desmoplastic HGP presence was 33% in the resection arm versus 61% in the chemotherapy arm (p = 0.005). Chemotherapy was independently associated with an increase in desmoplastic HGP (β [95% CI]: 23.29 [1.78–44.79], p = 0.022). All three tumour regression gradings were significantly associated with the desmoplastic HGP in the chemotherapy arm (all p < 0.04). None were associated in the resection arm (all p > 0.11). Preoperative chemotherapy induces histopathological changes that alter the HGP of CRLM.
Array-Based DNA Methylation Profiling for Breast Cancer Subtype Discrimination
Abnormal DNA methylation is well established for breast cancer and contributes to its progression by silencing tumor suppressor genes. DNA methylation profiling platforms might provide an alternative approach to expression microarrays for accurate breast tumor subtyping. We sought to determine whether the distinction of the inflammatory breast cancer (IBC) phenotype from the non-IBC phenotype by transcriptomics could be sustained by methylomics. We performed methylation profiling on a cohort of IBC (N = 19) and non-IBC (N = 43) samples using the Illumina Infinium Methylation Assay. These results were correlated with gene expression profiles. Methylation values allowed separation of breast tumor samples into high and low methylation groups. This separation was significantly related to DNMT3B mRNA levels. The high methylation group was enriched for breast tumor samples from patients with distant metastasis and poor prognosis, as predicted by the 70-gene prognostic signature. Furthermore, this tumor group tended to be enriched for IBC samples (54% vs. 24%) and samples with a high genomic grade index (67% vs. 38%). A set of 16 CpG loci (14 genes) correctly classified 97% of samples into the low or high methylation group. Differentially methylated genes appeared to be mainly related to focal adhesion, cytokine-cytokine receptor interactions, Wnt signaling pathway, chemokine signaling pathways and metabolic processes. Comparison of IBC with non-IBC led to the identification of only four differentially methylated genes (TJP3, MOGAT2, NTSR2 and AGT). A significant correlation between methylation values and gene expression was shown for 4,981 of 6,605 (75%) genes. A subset of clinical samples of breast cancer was characterized by high methylation levels, which coincided with increased DNMT3B expression. Furthermore, an association was observed with molecular signatures indicative of poor patient prognosis. The results of the current study also suggest that aberrant DNA methylation is not the main force driving the molecular biology of IBC.
Histopathological Growth Patterns and Survival After Resection of Colorectal Liver Metastasis: An External Validation Study
Background After resection of colorectal cancer liver metastases (CRLM), 2 main histopathological growth patterns can be observed: a desmoplastic and a nondesmoplastic subtype. The desmoplastic subtype has been associated with superior survival. These findings require external validation. Methods An international multicenter retrospective cohort study was conducted in patients treated surgically for CRLM at 3 tertiary hospitals in the United States and the Netherlands. Determination of histopathological growth patterns was performed on hematoxylin and eosin–stained sections of resected CRLM according to international guidelines. Patients displaying a desmoplastic histopathological phenotype (only desmoplastic growth observed) were compared with patients with a nondesmoplastic phenotype (any nondesmoplastic growth observed). Cutoff analyses on the extent of nondesmoplastic growth were performed. Overall survival (OS) and disease-free survival (DFS) were estimated using Kaplan-Meier and multivariable Cox analysis. All statistical tests were 2-sided. Results In total 780 patients were eligible. A desmoplastic phenotype was observed in 19.1% and was associated with microsatellite instability (14.6% vs 3.6%, P = .01). Desmoplastic patients had superior 5-year OS (73.4%, 95% confidence interval [CI] = 64.1% to 84.0% vs 44.2%, 95% CI = 38.9% to 50.2%, P < .001) and DFS (32.0%, 95% CI = 22.9% to 44.7% vs 14.7%, 95% CI = 11.7% to 18.6%, P < .001) compared with their nondesmoplastic counterparts. A desmoplastic phenotype was associated with an adjusted hazard ratio for death of 0.36 (95% CI = 0.23 to 0.58) and 0.50 (95% CI = 0.37 to 0.66) for cancer recurrence. Prognosis was independent of KRAS and BRAF status. The cutoff analyses found no prognostic relationship between either OS or DFS and the extent of nondesmoplastic growth observed (all P > .1). Conclusions This external validation study confirms the remarkably good prognosis after surgery for CRLM in patients with a desmoplastic phenotype. The extent of nondesmoplastic growth does not affect prognosis.