Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
LanguageLanguage
-
SubjectSubject
-
Item TypeItem Type
-
DisciplineDiscipline
-
YearFrom:-To:
-
More FiltersMore FiltersIs Peer Reviewed
Done
Filters
Reset
29
result(s) for
"Vermulst, Marc"
Sort by:
Somatic mutations in neurons during aging and neurodegeneration
2018
The nervous system is composed of a large variety of neurons with a diverse array of morphological and functional properties. This heterogeneity is essential for the construction and maintenance of a distinct set of neural networks with unique characteristics. Accumulating evidence now indicates that neurons do not only differ at a functional level, but also at the genomic level. These genomic discrepancies seem to be the result of somatic mutations that emerge in nervous tissue during development and aging. Ultimately, these mutations bring about a genetically heterogeneous population of neurons, a phenomenon that is commonly referred to as “somatic brain mosaicism”. Improved understanding of the development and consequences of somatic brain mosaicism is crucial to understand the impact of somatic mutations on neuronal function in human aging and disease. Here, we highlight a number of topics related to somatic brain mosaicism, including some early experimental evidence for somatic mutations in post-mitotic neurons of the hypothalamo-neurohypophyseal system. We propose that age-related somatic mutations are particularly interesting, because aging is a major risk factor for a variety of neuronal diseases, including Alzheimer’s disease. We highlight potential links between somatic mutations and the development of these diseases and argue that recent advances in single-cell genomics and in vivo physiology have now finally made it possible to dissect the origins and consequences of neuronal mutations in unprecedented detail.
Journal Article
The mutational landscape of SARS-CoV-2 provides new insight into viral evolution and fitness
2025
Although vaccines and treatments have strengthened our ability to combat the COVID-19 pandemic, new variants of SARS-CoV-2 continue to emerge in human populations. Because the evolution of SARS-CoV-2 is driven by mutation, a better understanding of its mutation rate and spectrum could improve our ability to forecast the trajectory of the pandemic. Here, we use circular RNA consensus sequencing (CirSeq) to determine the mutation rate of six SARS-CoV-2 variants and perform a short-term evolution experiment to determine the impact of these mutations on viral fitness. Our analyses indicate that the SARS-CoV-2 genome mutates at a rate of ∼1.5 × 10
−6
/base per viral passage and that the spectrum is dominated by C → U transitions. Moreover, we find that the mutation rate is significantly reduced in regions that form base-pairing interactions and that mutations that affect these secondary structures are especially harmful to viral fitness. In this work, we show that the biased mutation spectrum of SARS-CoV-2 is likely a result of frequent cytidine deamination and that the secondary structure of the virus plays an important role in this process, providing new insight into the parameters that guide viral evolution and highlighting fundamental weaknesses of the virus that may be exploited for therapeutic purposes.
Here, we report the mutation rate of SARS-CoV-2, the virus responsible for COVID-19. We find that the secondary structure of the RNA-encoded viral genome is crucial to modulating the mutation rate and evolves under strong selective constraints.
Journal Article
Evolutionary conservation of the fidelity of transcription
2023
Accurate transcription is required for the faithful expression of genetic information. However, relatively little is known about the molecular mechanisms that control the fidelity of transcription, or the conservation of these mechanisms across the tree of life. To address these issues, we measured the error rate of transcription in five organisms of increasing complexity and found that the error rate of RNA polymerase II ranges from 2.9 × 10
−6
± 1.9 × 10
−7
/bp in yeast to 4.0 × 10
−6
± 5.2 × 10
−7
/bp in worms, 5.69 × 10
−6
± 8.2 × 10
−7
/bp in flies, 4.9 × 10
−6
± 3.6 × 10
−7
/bp in mouse cells and 4.7 × 10
−6
± 9.9 × 10
−8
/bp in human cells. These error rates were modified by various factors including aging, mutagen treatment and gene modifications. For example, the deletion or modification of several related genes increased the error rate substantially in both yeast and human cells. This research highlights the evolutionary conservation of factors that control the fidelity of transcription. Additionally, these experiments provide a reasonable estimate of the error rate of transcription in human cells and identify disease alleles in a subunit of RNA polymerase II that display error-prone transcription. Finally, we provide evidence suggesting that the error rate and spectrum of transcription co-evolved with our genetic code.
The molecular mechanisms that ensure faithful transcription of genetic information are still unclear. Chung et al. identify various genes, alleles and processes that affect the fidelity of transcription multiple organisms, suggesting evolutionary conservation of fidelity factors, and compare the error rate of transcription among these species.
Journal Article
DNA deletions and clonal mutations drive premature aging in mitochondrial mutator mice
by
Kujoth, Gregory C
,
Wanagat, Jonathan
,
Bielas, Jason H
in
Aging
,
Aging, Premature - genetics
,
Agriculture
2008
Mitochondrial DNA (mtDNA) mutations are thought to have a causal role in many age-related pathologies. Here we identify mtDNA deletions as a driving force behind the premature aging phenotype of mitochondrial mutator mice, and provide evidence for a homology-directed DNA repair mechanism in mitochondria that is directly linked to the formation of mtDNA deletions. In addition, our results demonstrate that the rate at which mtDNA mutations reach phenotypic expression differs markedly among tissues, which may be an important factor in determining the tolerance of a tissue to random mitochondrial mutagenesis.
Journal Article
Correction to: Somatic mutations in neurons during aging and neurodegeneration
by
van Leeuwen, Fred W.
,
Vermulst, Marc
,
Verheijen, Bert M.
in
Correction
,
Medicine
,
Medicine & Public Health
2020
In the original article, the panels \"Brain organoids\" and \"Transgenics\" were included in Fig. 5 without permission.In the original article, the panels \"Brain organoids\" and \"Transgenics\" were included in Fig. 5 without permission.
Journal Article
Transcription errors induce proteotoxic stress and shorten cellular lifespan
2015
Transcription errors occur in all living cells; however, it is unknown how these errors affect cellular health. To answer this question, we monitor yeast cells that are genetically engineered to display error-prone transcription. We discover that these cells suffer from a profound loss in proteostasis, which sensitizes them to the expression of genes that are associated with protein-folding diseases in humans; thus, transcription errors represent a new molecular mechanism by which cells can acquire disease phenotypes. We further find that the error rate of transcription increases as cells age, suggesting that transcription errors affect proteostasis particularly in aging cells. Accordingly, transcription errors accelerate the aggregation of a peptide that is implicated in Alzheimer's disease, and shorten the lifespan of cells. These experiments reveal a previously unappreciated role for transcriptional fidelity in cellular health and aging.
Transcription, like DNA replication, is an error-prone process. Vermulst
et al.
show that transcription errors increase with age in yeast, and find that prematurely increasing the error rate overwhelms the proteotoxic stress response, allowing aggregation-prone proteins to escape protein quality control.
Journal Article
Transcript errors generate amyloid-like proteins in human cells
2024
Aging is characterized by the accumulation of proteins that display amyloid-like behavior. However, the molecular mechanisms by which these proteins arise remain unclear. Here, we demonstrate that amyloid-like proteins are produced in a variety of human cell types, including stem cells, brain organoids and fully differentiated neurons by mistakes that occur in messenger RNA molecules. Some of these mistakes generate mutant proteins already known to cause disease, while others generate proteins that have not been observed before. Moreover, we show that these mistakes increase when cells are exposed to DNA damage, a major hallmark of human aging. When taken together, these experiments suggest a mechanistic link between the normal aging process and age-related diseases.
Amyloid-like proteins are central to age-related diseases, such as Alzheimer’s and Parkinson’s. Here, the authors show that transcription errors can produce mutant proteins with enhanced amyloid- and prion-like properties in human cells.
Journal Article
Decreased Mitochondrial DNA Mutagenesis in Human Colorectal Cancer
2012
Genome instability is regarded as a hallmark of cancer. Human tumors frequently carry clonally expanded mutations in their mitochondrial DNA (mtDNA), some of which may drive cancer progression and metastasis. The high prevalence of clonal mutations in tumor mtDNA has commonly led to the assumption that the mitochondrial genome in cancer is genetically unstable, yet this hypothesis has not been experimentally tested. In this study, we directly measured the frequency of non-clonal (random) de novo single base substitutions in the mtDNA of human colorectal cancers. Remarkably, tumor tissue exhibited a decreased prevalence of these mutations relative to adjacent non-tumor tissue. The difference in mutation burden was attributable to a reduction in C:G to T:A transitions, which are associated with oxidative damage. We demonstrate that the lower random mutation frequency in tumor tissue was also coupled with a shift in glucose metabolism from oxidative phosphorylation to anaerobic glycolysis, as compared to non-neoplastic colon. Together these findings raise the intriguing possibility that fidelity of mitochondrial genome is, in fact, increased in cancer as a result of a decrease in reactive oxygen species-mediated mtDNA damage.
Journal Article
Effects of calorie restriction on the lifespan and healthspan of POLG mitochondrial mutator mice
by
Kujoth, Gregory C.
,
Kim, Mi-Jung
,
Someya, Shinichi
in
Accelerated aging tests
,
Accelerated tests
,
Aging
2017
Mitochondrial DNA (mtDNA) mutations are thought to have a causative role in age-related pathologies. We have shown previously that mitochondrial mutator mice (PolgD257A/D257A), harboring a proofreading-deficient version of the mtDNA polymerase gamma (POLG), accumulate mtDNA mutations in multiple tissues and display several features of accelerated aging. Calorie restriction (CR) is known to delay the onset of age-related diseases and to extend the lifespan of a variety of species, including rodents. In the current study we investigated the effects of CR on the lifespan and healthspan of mitochondrial mutator mice. Long-term CR did not increase the median or maximum lifespan of PolgD257A/D257A mice. Furthermore, CR did not reduce mtDNA deletions in the heart and muscle, accelerated sarcopenia, testicular atrophy, nor improve the alterations in cardiac parameters that are present in aged mitochondrial mutator mice. Therefore, our findings suggest that accumulation of mtDNA mutations may interfere with the beneficial action of CR in aging retardation.
Journal Article
Linking Environmental Genotoxins to Neurodegenerative Diseases Through Transcriptional Mutagenesis
by
Vermulst, Marc
,
Verheijen, Bert M.
in
Alzheimer's disease
,
Amyotrophic lateral sclerosis
,
Animals
2024
Numerous lines of evidence suggest that DNA damage contributes to the initiation, progression, and severity of neurodegenerative diseases. However, the molecular mechanisms responsible for this relationship remain unclear. This review integrates historical data with contemporary findings to propose that DNA damage exacerbates neurodegenerative diseases by inducing transcription errors. First, we describe the scientific rationale and basic biological concepts that underpin this hypothesis. Then, we provide epidemiological, cellular, and molecular data to support this idea, and we describe new and recently published observations that suggest that the former high incidence of neurodegenerative disease in Guam may have been driven by DNA damage-induced transcription errors. Finally, we explore the long-term implications of these findings on our understanding of the impact of genotoxic stress on human aging and disease.
Journal Article