Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
220
result(s) for
"Vernier, P"
Sort by:
Major influence of tropical volcanic eruptions on the stratospheric aerosol layer during the last decade
2011
The variability of stratospheric aerosol loading between 1985 and 2010 is explored with measurements from SAGE II, CALIPSO, GOMOS/ENVISAT, and OSIRIS/Odin space-based instruments. We find that, following the 1991 eruption of Mount Pinatubo, stratospheric aerosol levels increased by as much as two orders of magnitude and only reached background levels between 1998 and 2002. From 2002 onwards, a systematic increase has been reported by a number of investigators. Recently, the trend, based on ground-based lidar measurements, has been tentatively attributed to an increase of SO2 entering the stratosphere associated with coal burning in Southeast Asia. However, we demonstrate with these satellite measurements that the observed trend is mainly driven by a series of moderate but increasingly intense volcanic eruptions primarily at tropical latitudes. These events injected sulfur directly to altitudes between 18 and 20 km. The resulting aerosol particles are slowly lofted into the middle stratosphere by the Brewer-Dobson circulation and are eventually transported to higher latitudes.
Journal Article
The Persistently Variable \Background\ Stratospheric Aerosol Layer and Global Climate Change
by
Dutton, E. G.
,
Daniel, J. S.
,
Neely, R. R.
in
Absorption and scattering of radiation
,
Aerosols
,
Artificial satellites
2011
Recent measurements demonstrate that the \"background\" stratospheric aerosol layer is persistently variable rather than constant, even in the absence of major volcanic eruptions. Several independent data sets show that stratospheric aerosols have increased in abundance since 2000. Near-global satellite aerosol data imply a negative radiative forcing due to stratospheric aerosol changes over this period of about -0.1 watt per square meter, reducing the recent global warming that would otherwise have occurred. Observations from earlier periods are limited but suggest an additional negative radiative forcing of about -0.1 watt per square meter from 1960 to 1990. Climate model projections neglecting these changes would continue to overestimate the radiative forcing and global warming in coming decades if these aerosols remain present at current values or increase.
Journal Article
CALIPSO detection of an Asian tropopause aerosol layer
2011
The first four years of the CALIPSO lidar measurements have revealed the existence of an aerosol layer at the tropopause level associated with the Asian monsoon season in June, July and August. This Asian Tropopause Aerosol Layer (ATAL) extends geographically from Eastern Mediterranean (down to North Africa) to Western China (down to Thailand), and vertically from 13 to 18 km. The Scattering Ratio inferred from CALIPSO shows values between 1.10. 1.15 on average with associated depolarization ratio of less than 5%. The Gaussian distribution of the points indicates that the mean value is statistically driven by an enhancement of the background aerosol level and not by episodic events such as a volcanic eruption or cloud contamination. Further satellite observations of aerosols and gases as well as field campaigns are urgently needed to characterize this layer, which is likely to be a significant source of non-volcanic aerosols for the global upper troposphere with a potential impact on its radiative and chemical balance
Journal Article
Improved SAGE II cloud/aerosol categorization and observations of the Asian tropopause aerosol layer: 1989–2005
2013
We describe the challenges associated with the interpretation of extinction coefficient measurements by the Stratospheric Aerosol and Gas Experiment (SAGE II) in the presence of clouds. In particular, we have found that tropospheric aerosol analyses are highly dependent on a robust method for identifying when clouds affect the measured extinction coefficient. Herein, we describe an improved cloud identification method that appears to capture cloud/aerosol events more effectively than early methods. In addition, we summarize additional challenges to observing the Asian Tropopause Aerosol Layer (ATAL) using SAGE II observations. Using this new approach, we perform analyses of the upper troposphere, focusing on periods in which the UTLS (upper troposphere/lower stratosphere) is relatively free of volcanic material (1989–1990 and after 1996). Of particular interest is the Asian monsoon anticyclone where CALIPSO (Cloud-Aerosol Lidar Pathfinder Satellite Observations) has observed an aerosol enhancement. This enhancement, called the ATAL, has a similar morphology to observed enhancements in long-lived trace gas species like CO. Since the CALIPSO record begins in 2006, the question of how long this aerosol feature has been present requires a new look at the long-lived SAGE II data sets despite significant hurdles to its use in the subtropical upper troposphere. We find that there is no evidence of ATAL in the SAGE II data prior to 1998. After 1998, it is clear that aerosol in the upper troposphere in the ATAL region is substantially enhanced relative to the period before that time. In addition, the data generally supports the presence of the ATAL beginning in 1999 and continuing through the end of the mission, though some years (e.g., 2003) are complicated by the presence of episodic enhancements most likely of volcanic origin.
Journal Article
Dose-Dependent ATP Depletion and Cancer Cell Death following Calcium Electroporation, Relative Effect of Calcium Concentration and Electric Field Strength
by
Hansen, Emilie Louise
,
Sozer, Esin Bengisu
,
Frandsen, Stine Krog
in
Adenosine triphosphate
,
Adenosine Triphosphate - metabolism
,
Analysis
2015
Electroporation, a method for increasing the permeability of membranes to ions and small molecules, is used in the clinic with chemotherapeutic drugs for cancer treatment (electrochemotherapy). Electroporation with calcium causes ATP (adenosine triphosphate) depletion and cancer cell death and could be a novel cancer treatment. This study aims at understanding the relationship between applied electric field, calcium concentration, ATP depletion and efficacy.
In three human cell lines--H69 (small-cell lung cancer), SW780 (bladder cancer), and U937 (leukaemia), viability was determined after treatment with 1, 3, or 5 mM calcium and eight 99 μs pulses with 0.8, 1.0, 1.2, 1.4 or 1.6 kV/cm. Fitting analysis was applied to quantify the cell-killing efficacy in presence of calcium. Post-treatment intracellular ATP was measured in H69 and SW780 cells. Post-treatment intracellular ATP was observed with fluorescence confocal microscopy of quinacrine-labelled U937 cells.
Both H69 and SW780 cells showed dose-dependent (calcium concentration and electric field) decrease in intracellular ATP (p<0.05) and reduced viability. The 50% effective cell kill was found at 3.71 kV/cm (H69) and 3.28 kV/cm (SW780), reduced to 1.40 and 1.15 kV/cm (respectively) with 1 mM calcium (lower EC50 for higher calcium concentrations). Quinacrine fluorescence intensity of calcium-electroporated U937 cells was one third lower than in controls (p<0.0001).
Calcium electroporation dose-dependently reduced cell survival and intracellular ATP. Increasing extracellular calcium allows the use of a lower electric field.
This study supports the use of calcium electroporation for treatment of cancer and possibly lowering the applied electric field in future trials.
Journal Article
BATAL
by
Bedka, K.
,
Natarajan, M.
,
Raj, S. T. Akhil
in
Aeronautics
,
Aerosol concentrations
,
Aerosol effects
2018
We describe and show results from a series of field campaigns that used balloonborne instruments launched from India and Saudi Arabia during the summers 2014–17 to study the nature, formation, and impacts of the Asian Tropopause Aerosol Layer (ATAL). The campaign goals were to i) characterize the optical, physical, and chemical properties of the ATAL; ii) assess its impacts on water vapor and ozone; and iii) understand the role of convection in its formation. To address these objectives, we launched 68 balloons from four locations, one in Saudi Arabia and three in India, with payload weights ranging from 1.5 to 50 kg. We measured meteorological parameters; ozone; water vapor; and aerosol backscatter, concentration, volatility, and composition in the upper troposphere and lower stratosphere (UTLS) region. We found peaks in aerosol concentrations of up to 25 cm–3 for radii > 94 nm, associated with a scattering ratio at 940 nm of ∼1.9 near the cold-point tropopause. During medium-duration balloon flights near the tropopause, we collected aerosols and found, after offline ion chromatography analysis, the dominant presence of nitrate ions with a concentration of about 100 ng m–3. Deep convection was found to influence aerosol loadings 1 km above the cold-point tropopause. The Balloon Measurements of the Asian Tropopause Aerosol Layer (BATAL) project will continue for the next 3–4 years, and the results gathered will be used to formulate a future National Aeronautics and Space Administration–Indian Space Research Organisation (NASA–ISRO) airborne campaign with NASA high-altitude aircraft.
Journal Article
Electric Field-Driven Water Dipoles: Nanoscale Architecture of Electroporation
by
Colvin, Michael E.
,
Levine, Zachary A.
,
Lee, Jane HyoJin
in
Analysis
,
biochemical simulations
,
Biology
2013
Electroporation is the formation of permeabilizing structures in the cell membrane under the influence of an externally imposed electric field. The resulting increased permeability of the membrane enables a wide range of biological applications, including the delivery of normally excluded substances into cells. While electroporation is used extensively in biology, biotechnology, and medicine, its molecular mechanism is not well understood. This lack of knowledge limits the ability to control and fine-tune the process. In this article we propose a novel molecular mechanism for the electroporation of a lipid bilayer based on energetics analysis. Using molecular dynamics simulations we demonstrate that pore formation is driven by the reorganization of the interfacial water molecules. Our energetics analysis and comparisons of simulations with and without the lipid bilayer show that the process of poration is driven by field-induced reorganization of water dipoles at the water-lipid or water-vacuum interfaces into more energetically favorable configurations, with their molecular dipoles oriented in the external field. Although the contributing role of water in electroporation has been noted previously, here we propose that interfacial water molecules are the main players in the process, its initiators and drivers. The role of the lipid layer, to a first-order approximation, is then reduced to a relatively passive barrier. This new view of electroporation simplifies the study of the problem, and opens up new opportunities in both theoretical modeling of the process and experimental research to better control or to use it in new, innovative ways.
Journal Article
Toward Rapid Balloon Experiments for Sudden Aerosol Injection in the Stratosphere (REAS) by Volcanic Eruptions and Wildfires
2024
Stratospheric aerosols are greatly influenced by medium-to-large volcanic eruptions. Over the last few years, extreme wildfires have been identified as new sources of stratospheric particles, in the form of carbonaceous aerosols injected by pyrocumulonimbus (pyroCb) events in the upper troposphere and lower stratosphere, associated with significant impacts on climate and ozone chemistry. To assess the impact of wildfires and volcanic eruptions on stratospheric aerosol loadings in the Northern Hemisphere, the Rapid Balloon Experiments for Sudden Aerosol Injection in the Stratosphere (REAS) project has been initiated. REAS is an international initiative that aims to respond to sudden events impacting stratospheric aerosol composition. Seventeen balloons were launched from Reims, eastern France, between November 2021 and January 2022 to quantify the atmospheric content for both aerosols and trace/greenhouse gases from the ground up to stratospheric levels. The main measurements concerned trace gases (CO/CO 2 as tracers of smoke) and aerosol together with ozone using instruments such as a gas collector, optical particle counters, backscatter sondes, an aerosol sampler, an aerosol impactor, and ozonesondes. The Groupe de Spectrométrie Moléculaire et Atmosphérique (GSMA) launch facility provided unique possibilities of combining multiple measurements in one flight thanks to medium flights (corresponding to a 6 kg payload). While no major event impacted the stratosphere during the campaign, we particularly discuss the influence of the aged volcanic plume from La Soufrière volcano (Saint Vincent island) and smoke particles from series of pyroCb events that took place in North America. The burden as well as the optical and microphysical properties of the observed aerosols are quantified from these in situ observations in association with various satellite data.
Journal Article
VolKilau
by
Vernier, J.-P.
,
Diaz, J. A.
,
Corrales, E.
in
Aerosol concentrations
,
Aerosol measurements
,
Aerosol optical properties
2020
After nearly 35 years of stable activity, the Kilauea volcanic system in Hawaii went through sudden changes in May 2018 with the emergence of 20 volcanic fissures along the Lower Eastern Rift Zone (LERZ), destroying 700 homes in Leilani Estates and forcing more than 2,000 people to evacuate. Elevated volcanic emissions lasted for several months between May and September 2018, leading to low visibility and poor air quality in Hawaii and across the western Pacific. The NASA-funded VolKilau mission was rapidly mounted and conducted between 11 and 18 June 2018 to (i) profile volcanic emissions with SO₂ and aerosol measurements, (ii) validate satellite observations, and (iii) increase readiness for the next large volcanic eruption. Through a series of balloon-borne measurements with tethered and free-released launches, we measured SO₂ concentration, aerosol concentration, and optical properties 60–80 km downwind from the volcanic fissures using gas sensors, optical particle counters, backscatter sondes, and an aerosol impactor. While most of the measurements made during the Kilauea eruption were ground based, the VolKilau mission represented a unique opportunity to characterize plume properties, constrain emission profiles, study early chemistry involving the conversion of SO₂ into sulfuric acid, and understand the influence of water clouds in the removal of SO₂. This unprecedented combination of measurements has significantly improved our team’s ability to assess the atmospheric and human impacts of a major event such as this.
Journal Article
Dispersion of the Nabro volcanic plume and its relation to the Asian summer monsoon
by
Natarajan, M.
,
Bedka, K. M.
,
Fairlie, T. D.
in
Middle atmosphere
,
Optical properties
,
Remote sensing
2014
We use nighttime measurements from the Cloud Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) satellite, together with a Lagrangian trajectory model, to study the initial dispersion of volcanic aerosol from the eruption of Mt. Nabro (Ethiopia/Eritrea) in June 2011. The Nabro eruption reached the upper troposphere and lower stratosphere (UTLS) directly, and the plume was initially entrained by the flow surrounding the Asian anticyclone, which prevails in the UTLS from the Mediterranean Sea to East Asia during boreal summer. CALIPSO detected aerosol layers, with optical properties consistent with sulfate, in the lower stratosphere above the monsoon convective region in South and Southeast Asia within 10 days of the eruption. We show that quasi-isentropic differential advection in the vertically sheared flow surrounding the Asian anticyclone explains many of these stratospheric aerosol layers. We use Meteosat-7 data to examine the possible role of deep convection in the Asian monsoon in transporting volcanic material to the lower stratosphere during this time, but find no evidence that convection played a direct role, in contrast with claims made in earlier studies. On longer timescales, we use CALIPSO data to illustrate diabatic ascent of the Nabro aerosol in the lower stratosphere at rates of ~ 10 K per month for the first two months after the eruption, falling to ~ 3 K per month after the Asian anticyclone dissipates. Maps of stratospheric aerosol optical depth (AOD) show local peaks of ~ 0.04–0.06 in July in the region of the Asian anticyclone; we find associated estimates of radiative forcing small, ~ 5–10% of those reported for the eruption of Mt. Pinatubo in 1991. Additionally, we find no clear response in outgoing shortwave (SW) flux due to the presence of Nabro aerosol viewed in the context of SW flux variability as measured by CERES (Clouds and Earth Radiant Energy System).
Journal Article