Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
42
result(s) for
"Vertefeuille, John F"
Sort by:
Analysis of population immunity to poliovirus following cessation of trivalent oral polio vaccine
by
Makam, Jeevan K
,
Voorman, Arend
,
F Vertefeuille, John
in
Age groups
,
Allergy and Immunology
,
Allocations
2023
AbstractBackgroundThe global withdrawal of trivalent oral poliovirus vaccine (OPV) (tOPV, containing Sabin poliovirus strains serotypes 1, 2 and 3) from routine immunization, and the introduction of bivalent OPV (bOPV, containing Sabin poliovirus strains serotypes 1 and 3) and trivalent inactivated poliovirus vaccine (IPV) into routine immunization was expected to improve population serologic and mucosal immunity to types 1 and 3 poliovirus, while population mucosal immunity to type 2 poliovirus would decline. However, over the period since tOPV withdrawal, the implementation of preventive bOPV supplementary immunization activities (SIAs) has decreased, while outbreaks of type 2 circulating vaccine derived poliovirus (cVDPV2) have required targeted use of monovalent type 2 OPV (mOPV2). MethodsWe develop a dynamic model of OPV-induced immunity to estimate serotype-specific, district-level immunity for countries in priority regions and characterize changes in immunity since 2016. We account for the changes in routine immunization schedules and varying implementation of preventive and outbreak response SIAs, assuming homogenous coverages of 50% and 80% for SIAs. ResultsIn areas with strong routine immunization, the switch from tOPV to bOPV has likely resulted in gains in population immunity to types 1 and 3 poliovirus. However, we estimate that improved immunogenicity of new schedules has not compensated for declines in preventive SIAs in areas with weak routine immunization. For type 2 poliovirus, without tOPV in routine immunization or SIAs, mucosal immunity has declined nearly everywhere, while use of mOPV2 has created highly heterogeneous population immunity for which it is important to take into account when responding to cVDPV2 outbreaks. ConclusionsThe withdrawal of tOPV and declining allocations of resources for preventive bOPV SIAs have resulted in reduced immunity in vulnerable areas to types 1 and 3 poliovirus and generally reduced immunity to type 2 poliovirus in the regions studied, assuming homogeneous coverages of 50% and 80% for SIAs. The very low mucosal immunity to type 2 poliovirus generates substantially greater risk for further spread of cVDPV2 outbreaks. Emerging gaps in immunity to all serotypes will require judicious targeting of limited resources to the most vulnerable populations by the Global Polio Eradication Initiative (GPEI).
Journal Article
Routine Vaccination Coverage in Northern Nigeria: Results from 40 District-Level Cluster Surveys, 2014-2015
by
Scobie, Heather M.
,
Wannemuehler, Kathleen A.
,
Ogbuanu, Ikechukwu U.
in
BCG Vaccine - administration & dosage
,
Biology and Life Sciences
,
Child
2016
Despite recent success towards controlling poliovirus transmission, Nigeria has struggled to achieve uniformly high routine vaccination coverage. A lack of reliable vaccination coverage data at the operational level makes it challenging to target program improvement. To reliably estimate vaccination coverage, we conducted district-level vaccine coverage surveys using a pre-existing infrastructure of polio technical staff in northern Nigeria.
Household-level cluster surveys were conducted in 40 polio high risk districts of Nigeria during 2014-2015. Global positioning system technology and intensive supervision by a pool of qualified technical staff were used to ensure high survey quality. Vaccination status of children aged 12-23 months was documented based on vaccination card or caretaker's recall. District-level coverage estimates were calculated using survey methods.
Data from 7,815 children across 40 districts were analyzed. District-level coverage with the third dose of diphtheria-pertussis-tetanus vaccine (DPT3) ranged widely from 1-63%, with all districts having DPT3 coverage below the target of 80%. Median coverage across all districts for each of eight vaccine doses (1 Bacille Calmette-Guérin dose, 3 DPT doses, 3 oral poliovirus vaccine doses, and 1 measles vaccine dose) was <50%. DPT3 coverage by survey was substantially lower (range: 28%-139%) than the 2013 administrative coverage reported among children aged <12 months. Common reported reasons for non-vaccination included lack of knowledge about vaccines and vaccination services (50%) and factors related to access to routine immunization services (15%).
Survey results highlighted vaccine coverage gaps that were systematically underestimated by administrative reporting across 40 polio high risk districts in northern Nigeria. Given the limitations of administrative coverage data, our approach to conducting quality district-level coverage surveys and providing data to assess and remediate issues contributing to poor vaccination coverage could serve as an example in countries with sub-optimal vaccination coverage, similar to Nigeria.
Journal Article
Progress Toward Polio Eradication — Worldwide, January 2018–March 2020
by
Tallis, Graham
,
Chard, Anna N.
,
Wassilak, Steven G.F.
in
Disease eradication
,
Full Report
,
Poliomyelitis
2020
Since the Global Polio Eradication Initiative (GPEI) was established in 1988, two of the three wild poliovirus (WPV) serotypes (types 2 and 3) have been eradicated.* Transmission of WPV type 1 (WPV1) remains uninterrupted only in Afghanistan and Pakistan. This report summarizes progress toward global polio eradication during January 1, 2018-March 31, 2020 and updates previous reports (1,2). In 2019, Afghanistan and Pakistan reported the highest number of WPV1 cases (176) since 2014. During January 1-March 31, 2020 (as of June 19), 54 WPV1 cases were reported, an approximate fourfold increase from 12 cases during the corresponding period in 2019. Paralytic poliomyelitis can also be caused by circulating vaccine-derived poliovirus (cVDPV), which emerges when attenuated oral poliovirus vaccine (OPV) virus reverts to neurovirulence following prolonged circulation in underimmunized populations (3). Since the global withdrawal of type 2-containing OPV (OPV2) in April 2016, cVDPV type 2 (cVDPV2) outbreaks have increased in number and geographic extent (4). During January 2018-March 2020, 21 countries reported 547 cVDPV2 cases. Complicating increased poliovirus transmission during 2020, the coronavirus disease 2019 (COVID-19) pandemic and mitigation efforts have resulted in suspension of immunization activities and disruptions to poliovirus surveillance. When the COVID-19 emergency subsides, enhanced support will be needed to resume polio eradication field activities.Since the Global Polio Eradication Initiative (GPEI) was established in 1988, two of the three wild poliovirus (WPV) serotypes (types 2 and 3) have been eradicated.* Transmission of WPV type 1 (WPV1) remains uninterrupted only in Afghanistan and Pakistan. This report summarizes progress toward global polio eradication during January 1, 2018-March 31, 2020 and updates previous reports (1,2). In 2019, Afghanistan and Pakistan reported the highest number of WPV1 cases (176) since 2014. During January 1-March 31, 2020 (as of June 19), 54 WPV1 cases were reported, an approximate fourfold increase from 12 cases during the corresponding period in 2019. Paralytic poliomyelitis can also be caused by circulating vaccine-derived poliovirus (cVDPV), which emerges when attenuated oral poliovirus vaccine (OPV) virus reverts to neurovirulence following prolonged circulation in underimmunized populations (3). Since the global withdrawal of type 2-containing OPV (OPV2) in April 2016, cVDPV type 2 (cVDPV2) outbreaks have increased in number and geographic extent (4). During January 2018-March 2020, 21 countries reported 547 cVDPV2 cases. Complicating increased poliovirus transmission during 2020, the coronavirus disease 2019 (COVID-19) pandemic and mitigation efforts have resulted in suspension of immunization activities and disruptions to poliovirus surveillance. When the COVID-19 emergency subsides, enhanced support will be needed to resume polio eradication field activities.
Journal Article
Progress Toward Polio Eradication — Worldwide, January 2017–March 2019
by
Greene, Sharon A.
,
Ahmed, Jamal
,
Quddus, Arshad
in
Disease eradication
,
Full Report
,
Poliomyelitis
2019
Since the Global Polio Eradication Initiative (GPEI) began in 1988, transmission of wild poliovirus (WPV) has been interrupted in all countries except Afghanistan, Nigeria, and Pakistan. WPV type 2 (WPV2) was declared eradicated in 2015; WPV type 3 has not been detected since 2012 (1). After the certification of the eradication of WPV2, a global switch from trivalent oral poliovirus vaccine (tOPV, containing vaccine virus types 1, 2, and 3) to bivalent oral poliovirus vaccine (bOPV, containing types 1 and 3) was completed in April 2016. Nigeria last reported WPV type 1 (WPV1) cases in 2016. This report describes global progress toward poliomyelitis eradication during January 1, 2017-March 31, 2019, and updates previous reports (1,2). Afghanistan and Pakistan reported their lowest annual number of WPV cases (22) in 2017; however, 33 WPV1 cases were reported in 2018. During January-March 2019 (as of May 3), 12 WPV1 cases had been reported worldwide, four more than the eight reported during the corresponding period in 2018. The occurrence of polio cases caused by circulating vaccine-derived poliovirus (cVDPV) is rare and occurs where oral poliovirus vaccine (OPV) coverage has been low and vaccine virus reverts to neurovirulence (3). Eight countries (Democratic Republic of the Congo [DRC], Indonesia, Mozambique, Niger, Nigeria, Papua New Guinea, Somalia, and Syria) reported 210 cVDPV cases during 2017-2019 (as of May 3). Reaching children during supplemental immunization activities (SIAs), accessing mobile populations at high risk, and variations in surveillance performance represent ongoing challenges. Innovative efforts to vaccinate every child and strengthen coordination efforts between Afghanistan and Pakistan will help achieve eradication. For cVDPV outbreak responses to promptly stop transmission, intensified programmatic improvements are needed to make the responses more effective and limit the risk for generating future outbreaks.
Journal Article
Immunogenicity of novel oral poliovirus vaccine type 2 administered concomitantly with bivalent oral poliovirus vaccine: an open-label, non-inferiority, randomised, controlled trial
by
Vertefeuille, John F
,
Estivariz, Concepcion F
,
Wassilak, Steven G F
in
Antibodies
,
Antibodies, Viral
,
Bangladesh - epidemiology
2023
Novel oral poliovirus vaccine type 2 (nOPV2) was developed by modifying the Sabin strain to increase genetic stability and reduce risk of seeding new circulating vaccine-derived poliovirus type 2 outbreaks. Bivalent oral poliovirus vaccine (bOPV; containing Sabin types 1 and 3) is the vaccine of choice for type 1 and type 3 outbreak responses. We aimed to assess immunological interference between nOPV2 and bOPV when administered concomitantly.
We conducted an open-label, non-inferiority, randomised, controlled trial at two clinical trial sites in Dhaka, Bangladesh. Healthy infants aged 6 weeks were randomly assigned (1:1:1) using block randomisation, stratified by site, to receive nOPV2 only, nOPV2 plus bOPV, or bOPV only, at the ages of 6 weeks, 10 weeks, and 14 weeks. Eligibility criteria included singleton and full term (≥37 weeks’ gestation) birth and parents intending to remain in the study area for the duration of study follow-up activities. Poliovirus neutralising antibody titres were measured at the ages of 6 weeks, 10 weeks, 14 weeks, and 18 weeks. The primary outcome was cumulative immune response for all three poliovirus types at the age of 14 weeks (after two doses) and was assessed in the modified intention-to-treat population, which was restricted to participants with adequate blood specimens from all study visits. Safety was assessed in all participants who received at least one dose of study product. A non-inferiority margin of 10% was used to compare single and concomitant administration. This trial is registered with ClinicalTrials.gov, NCT04579510.
Between Feb 8 and Sept 26, 2021, 736 participants (244 in the nOPV2 only group, 246 in the nOPV2 plus bOPV group, and 246 in the bOPV only group) were enrolled and included in the modified intention-to-treat analysis. After two doses, 209 (86%; 95% CI 81–90) participants in the nOPV2 only group and 159 (65%; 58–70) participants in the nOPV2 plus bOPV group had a type 2 poliovirus immune response; 227 (92%; 88–95) participants in the nOPV2 plus bOPV group and 229 (93%; 89–96) participants in the bOPV only group had a type 1 response; and 216 (88%; 83–91) participants in the nOPV2 plus bOPV group and 212 (86%; 81–90) participants in the bOPV only group had a type 3 response. Co-administration was non-inferior to single administration for types 1 and 3, but not for type 2. There were 15 serious adverse events (including three deaths, one in each group, all attributable to sudden infant death syndrome); none were attributed to vaccination.
Co-administration of nOPV2 and bOPV interfered with immunogenicity for poliovirus type 2, but not for types 1 and 3. The blunted nOPV2 immunogenicity we observed would be a major drawback of using co-administration as a vaccination strategy.
The US Centers for Disease Control and Prevention.
Journal Article
Cholera Surveillance during the Haiti Epidemic — The First 2 Years
by
Vertefeuille, John F
,
Dahourou, Georges A
,
Steenland, Maria W
in
Adult
,
Age Distribution
,
Child, Preschool
2013
In January 2010, Haiti suffered a devastating earthquake. The problems intensified when cholera was introduced in October 2010. In this report, public health responders report on the evolution of this epidemic during the first 2 years.
On October 19, 2010, the Haitian Ministry of Public Health and Population's Directorate of Epidemiology, Laboratory and Research was notified of unusually high numbers of patients from 2 of Haiti's 10 administrative departments (similar to states or provinces), Artibonite and Centre, who had presented with acute watery diarrhea and dehydration, in some cases leading to death.
1
On October 21, 2010, the National Public Health Laboratory identified toxigenic
Vibrio cholerae
O1 (serotype Ogawa, biotype El Tor) in stool specimens from several patients.
2
The health ministry immediately informed the public, the Pan American Health Organization (PAHO), and other international authorities of the . . .
Journal Article
Progress Toward Polio Eradication — Worldwide, January 2019–June 2021
by
Bigouette, John Paul
,
Tallis, Graham
,
Vertefeuille, John F.
in
Accountability
,
Coronaviruses
,
COVID-19
2021
In 1988, when the Global Polio Eradication Initiative (GPEI) began, polio paralyzed >350,000 children across 125 countries. Today, only one of three wild poliovirus serotypes, type 1 (WPV1), remains in circulation in only two countries, Afghanistan and Pakistan. This report summarizes progress toward global polio eradication during January 1, 2019-June 30, 2021 and updates previous reports (1,2). In 2020, 140 cases of WPV1 were reported, including 56 in Afghanistan (a 93% increase from 29 cases in 2019) and 84 in Pakistan (a 43% decrease from 147 cases in 2019). As GPEI focuses on the last endemic WPV reservoirs, poliomyelitis outbreaks caused by circulating vaccine-derived poliovirus (cVDPV) have emerged as a result of attenuated oral poliovirus vaccine (OPV) virus regaining neurovirulence after prolonged circulation in underimmunized populations (3). In 2020, 32 countries reported cVDPV outbreaks (four type 1 [cVDPV1], 26 type 2 [cVDPV2] and two with outbreaks of both); 13 of these countries reported new outbreaks. The updated GPEI Polio Eradication Strategy 2022-2026 (4) includes expanded use of the type 2 novel oral poliovirus vaccine (nOPV2) to avoid new emergences of cVDPV2 during outbreak responses (3). The new strategy deploys other tactics, such as increased national accountability, and focused investments for overcoming the remaining barriers to eradication, including program disruptions and setbacks caused by the COVID-19 pandemic.In 1988, when the Global Polio Eradication Initiative (GPEI) began, polio paralyzed >350,000 children across 125 countries. Today, only one of three wild poliovirus serotypes, type 1 (WPV1), remains in circulation in only two countries, Afghanistan and Pakistan. This report summarizes progress toward global polio eradication during January 1, 2019-June 30, 2021 and updates previous reports (1,2). In 2020, 140 cases of WPV1 were reported, including 56 in Afghanistan (a 93% increase from 29 cases in 2019) and 84 in Pakistan (a 43% decrease from 147 cases in 2019). As GPEI focuses on the last endemic WPV reservoirs, poliomyelitis outbreaks caused by circulating vaccine-derived poliovirus (cVDPV) have emerged as a result of attenuated oral poliovirus vaccine (OPV) virus regaining neurovirulence after prolonged circulation in underimmunized populations (3). In 2020, 32 countries reported cVDPV outbreaks (four type 1 [cVDPV1], 26 type 2 [cVDPV2] and two with outbreaks of both); 13 of these countries reported new outbreaks. The updated GPEI Polio Eradication Strategy 2022-2026 (4) includes expanded use of the type 2 novel oral poliovirus vaccine (nOPV2) to avoid new emergences of cVDPV2 during outbreak responses (3). The new strategy deploys other tactics, such as increased national accountability, and focused investments for overcoming the remaining barriers to eradication, including program disruptions and setbacks caused by the COVID-19 pandemic.
Journal Article
Progress Toward Polio Eradication — Worldwide, January 2020–April 2022
2022
In 1988, the World Health Assembly established the Global Polio Eradication Initiative (GPEI). Since then, wild poliovirus (WPV) cases have decreased approximately 99.99%, and WPV types 2 and 3 have been declared eradicated. Only Afghanistan and Pakistan have never interrupted WPV type 1 (WPV1) transmission. This report describes global progress toward polio eradication during January 1, 2020-April 30, 2022, and updates previous reports (1,2). This activity was reviewed by CDC and was conducted consistent with applicable federal law and CDC policy.* Five WPV1 cases were reported from Afghanistan and Pakistan in 2021, compared with 140 in 2020. In 2022 (as of May 5), three WPV1 cases had been reported: one from Afghanistan and two from Pakistan. WPV1 genetically linked to virus circulating in Pakistan was identified in Malawi in a child with paralysis onset in November 2021. Circulating vaccine-derived polioviruses (cVDPVs), with neurovirulence and transmissibility similar to that of WPV, emerge in populations with low immunity following prolonged circulation of Sabin strain oral poliovirus vaccine (OPV) (3). During January 2020-April 30, 2022, a total of 1,856 paralytic cVDPV cases were reported globally: 1,113 in 2020 and 688 in 2021, including cases in Afghanistan and Pakistan. In 2022 (as of May 5), 55 cVDPV cases had been reported. Intensified programmatic actions leading to more effective outbreak responses are needed to stop cVDPV transmission. The 2022-2026 GPEI Strategic Plan objective of ending WPV1 transmission by the end of 2023 is attainable (4). However, the risk for children being paralyzed by polio remains until all polioviruses, including WPV and cVDPV, are eradicated.
Journal Article
Update on Vaccine-Derived Poliovirus Outbreaks — Worldwide, January 2018–June 2019
by
Iber, Jane
,
Henderson, Elizabeth
,
Quddus, Arshad
in
Disease eradication
,
Full Report
,
Poliomyelitis
2019
Certification of global eradication of indigenous wild poliovirus type 2 occurred in 2015 and of type 3 in 2019. Since the launch of the Global Polio Eradication Initiative (GPEI) in 1988 and broad use of live, attenuated oral poliovirus vaccine (OPV), the number of wild poliovirus cases has declined >99.99% (1). Genetically divergent vaccine-derived poliovirus* (VDPV) strains can emerge during vaccine use and spread in underimmunized populations, becoming circulating VDPV (cVDPV) strains, and resulting in outbreaks of paralytic poliomyelitis.† In April 2016, all oral polio vaccination switched from trivalent OPV (tOPV; containing vaccine virus types 1, 2, and 3) to bivalent OPV (bOPV; containing types 1 and 3) (2). Monovalent type 2 OPV (mOPV2) is used in response campaigns to control type 2 cVDPV (cVDPV2) outbreaks. This report presents data on cVDPV outbreaks detected during January 2018-June 2019 (as of September 30, 2019). Compared with January 2017-June 2018 (3), the number of reported cVDPV outbreaks more than tripled, from nine to 29; 25 (86%) of the outbreaks were caused by cVDPV2. The increase in the number of outbreaks in 2019 resulted from VDPV2 both inside and outside of mOPV2 response areas. GPEI is planning future use of a novel type 2 OPV, stabilized to decrease the likelihood of reversion to neurovirulence. However, all countries must maintain high population immunity to decrease the risk for cVDPV emergence. Cessation of all OPV use after certification of polio eradication will eliminate the risk for VDPV emergence.Certification of global eradication of indigenous wild poliovirus type 2 occurred in 2015 and of type 3 in 2019. Since the launch of the Global Polio Eradication Initiative (GPEI) in 1988 and broad use of live, attenuated oral poliovirus vaccine (OPV), the number of wild poliovirus cases has declined >99.99% (1). Genetically divergent vaccine-derived poliovirus* (VDPV) strains can emerge during vaccine use and spread in underimmunized populations, becoming circulating VDPV (cVDPV) strains, and resulting in outbreaks of paralytic poliomyelitis.† In April 2016, all oral polio vaccination switched from trivalent OPV (tOPV; containing vaccine virus types 1, 2, and 3) to bivalent OPV (bOPV; containing types 1 and 3) (2). Monovalent type 2 OPV (mOPV2) is used in response campaigns to control type 2 cVDPV (cVDPV2) outbreaks. This report presents data on cVDPV outbreaks detected during January 2018-June 2019 (as of September 30, 2019). Compared with January 2017-June 2018 (3), the number of reported cVDPV outbreaks more than tripled, from nine to 29; 25 (86%) of the outbreaks were caused by cVDPV2. The increase in the number of outbreaks in 2019 resulted from VDPV2 both inside and outside of mOPV2 response areas. GPEI is planning future use of a novel type 2 OPV, stabilized to decrease the likelihood of reversion to neurovirulence. However, all countries must maintain high population immunity to decrease the risk for cVDPV emergence. Cessation of all OPV use after certification of polio eradication will eliminate the risk for VDPV emergence.
Journal Article