Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
3 result(s) for "Viña, Conrado"
Sort by:
Changes in Brain Activation through Cognitive-Behavioral Therapy with Exposure to Virtual Reality: A Neuroimaging Study of Specific Phobia
Background: Cognitive-behavioral therapy (CBT) with exposure is the treatment of choice for specific phobia. Virtual reality exposure therapy (VRET) has shown benefits for the treatment and prevention of the return of fear in specific phobias by addressing the therapeutic limitations of exposure to real images. Method: Thirty-one participants with specific phobias to small animals were included: 14 were treated with CBT + VRET (intervention group), and 17 were treated with CBT + exposure to real images (active control group). Participants’ scores in anxiety and phobia levels were measured at baseline, post-treatment, and 3-month follow-up, and brain activation was measured through functional magnetic resonance imaging (fMRI) baseline and post-treatment. Results: Both groups showed a significant decrease in anxiety and phobia scores after the therapy and were maintained until follow-up. There were no significant differences between both groups. Overall, fMRI tests showed a significant decrease in brain activity after treatment in some structures (e.g., prefrontal and frontal cortex) and other structures (e.g., precuneus) showed an increasing activity after therapy. However, structures such as the amygdala remained active in both groups. Conclusions: The efficacy of CBT + VRET was observed in the significant decrease in anxiety responses. However, the results of brain activity observed suggest that there was still a fear response in the brain, despite the significant decrease in subjective anxiety levels.
Neuroimaging in cockroach phobia: An experimental study
In this study we explored the neuroimaging characteristics of persons with specific small animal (cockroach) phobia to determine whether there are differences in cerebral activity between persons with and without cockroach phobia under conditions of phobic and non-phobic stimulation. Method: 24 adult persons (12 with phobia) were studied. The diagnosis of phobia was obtained with a structured interview and questionnaires. All participants were exposed to a 3D video presentation during an fMRI session. Results: The phobic group showed significant differential activations that were congruent with a dual route model of fear processing through the thalamus-amygdala (route I) and the thalamus-sensory and association cortex-entorhinal cortex-hippocampus-subiculum-amygdala (route II). Apart from this dual route, we also found differential activations in the globus pallidum, parahippocampal gyrus, insula, pars orbitalis, triangularis and opercularis of the frontal cortex, and cerebellum. Respect to non-phobic group, no activations were found in the insula or the anterior cingulate cortex. Conclusions: There seems to be a dual route depending on how persons with phobia to cockroaches process phobic stimuli. This double processing can have implications for the psychological treatment of specific phobias. En este estudio se exploran las características en neuroimagen de personas con fobia específica a pequeños animales (cucarachas), para determinar si existen diferencias en la actividad cerebral entre personas con y sin fobia a las cucarachas, bajo condiciones de estimulación fóbica y no fóbica. Método: Se estudiaron 24 adultos (12 con fobia). El diagnóstico de fobia específica se obtuvo mediante una entrevista estructurada y cuestionarios. Todos fueron expuestos a una presentación en video 3D durante una sesión de RMNf. El grupo con fobia mostró activaciones diferenciales significativas, que fueron congruentes con el modelo de doble ruta en el procesamiento del miedo, a través del tálamo-amígdala (ruta I), y tálamo-corteza entorrinal-hipocampo-subículo-amígdala (ruta II). Además, se encontraron activaciones diferenciales en el globo pálido, en el giro hipocampal, ínsula, y en los pars orbitalis, triangularis y opercularis. Con respecto al grupo control, no se observaron activaciones de la ínsula ni el cingulado. Parece evidenciarse un modelo de doble ruta en el procesamiento de estímulos fóbicos. Este doble proceso puede tener implicaciones para el tratamiento psicológico de las fobias específicas.
The Equivalence between Virtual and Real Feared Stimuli in a Phobic Adult Sample: A Neuroimaging Study
The clinical use of virtual reality (VR) has proven its efficacy, especially when used as an exposure technique. A prominent property of VR’s utility is its equivalence with the reality it represents. In this study, we explored this equivalence in a clinical context using neuroimaging. A sample of 32 adults with specific phobias (i.e., to cockroaches, spiders, or lizards) was divided into two groups: One was exposed to phobic stimuli using VR and the other was exposed to real phobic images (RI). We used brain activations as a dependent measure, focusing specifically on brain areas usually associated with fear processing. Whole-brain analysis detected higher activations for RI in the hippocampus, occipital, and calcarine areas. A specific analysis of the amygdala and insula also detected higher activations and extensions in response to RI, but VR stimuli also activated those areas in a significant manner. These results suggest that even in those cases where RI stimuli activate all of the brain’s fear-processing circuits, VR stimuli do so as well. This implies that VR can be useful as an exposure technique similar to RI and applied as more than a mere training mechanism.