Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
9 result(s) for "Vijakumaran, Ubashini"
Sort by:
Effects of Hydroxytyrosol in Endothelial Functioning: A Comprehensive Review
Pharmacologists have been emphasizing and applying plant and herbal-based treatments in vascular diseases for decades now. Olives, for example, are a traditional symbol of the Mediterranean diet. Hydroxytyrosol is an olive-derived compound known for its antioxidant and cardioprotective effects. Acknowledging the merit of antioxidants in maintaining endothelial function warrants the application of hydroxytyrosol in endothelial dysfunction salvage and recovery. Endothelial dysfunction (ED) is an impairment of endothelial cells that adversely affects vascular homeostasis. Disturbance in endothelial functioning is a known precursor for atherosclerosis and, subsequently, coronary and peripheral artery disease. However, the effects of hydroxytyrosol on endothelial functioning were not extensively studied, limiting its value either as a nutraceutical supplement or in clinical trials. The action of hydroxytyrosol in endothelial functioning at a cellular and molecular level is gathered and summarized in this review. The favorable effects of hydroxytyrosol in the improvement of endothelial functioning from in vitro and in vivo studies were scrutinized. We conclude that hydroxytyrosol is capable to counteract oxidative stress, inflammation, vascular aging, and arterial stiffness; thus, it is beneficial to preserve endothelial function both in vitro and in vivo. Although not specifically for endothelial dysfunction, hydroxytyrosol safety and efficacy had been demonstrated via in vivo and clinical trials for cardiovascular-related studies.
Hyperglycemia Modulates mTOR Signaling and Myelin Protein Expression in Schwann Cells
Diabetic peripheral neuropathy (DPN) is a common complication of diabetes, marked by Schwann cell dysfunction, demyelination, and impaired nerve regeneration. Although Schwann cells undergo phenotypic changes under hyperglycemic conditions, the underlying molecular mechanisms remain unclear. This study aimed to examine the effects of high glucose on Schwann cell phenotype and assess the involvement of the mTOR signaling pathway. Primary Schwann cells were isolated from rat sciatic nerves and cultured in media containing 5 mM (control), 25 mM, or 50 mM glucose for five days. Immunofluorescence staining and corrected total cell fluorescence (CTCF) analysis were used to evaluate expression of key markers: c-Jun, Krox-20, p75NTR, MBP, mTOR, phosphorylated mTOR (Ser2448), and AKR1B1. Among these, significant changes were observed in MBP (p = 0.002), total mTOR (p = 0.001), and phosphorylated mTOR (Ser2448) (p = 0.0179), indicating impaired mTOR activation and loss of myelin protein expression. Non-significant changes in the other markers are discussed as preliminary observations. These findings highlight mTOR dysregulation and impaired myelin protein expression as central features of Schwann cell responses to hyperglycemia, which may contribute to the development of DPN.
Maximizing Postoperative Recovery: The Role of Functional Biomaterials as Nasal Packs—A Comprehensive Systematic Review without Meta-Analysis (SWiM)
Numerous biomaterials have been developed over the years to enhance the outcomes of endoscopic sinus surgery (ESS) for patients with chronic rhinosinusitis. These products are specifically designed to prevent postoperative bleeding, optimize wound healing, and reduce inflammation. However, there is no singular material on the market that can be deemed the optimal material for the nasal pack. We systematically reviewed the available evidence to assess the functional biomaterial efficacy after ESS in prospective studies. The search was performed using predetermined inclusion and exclusion criteria, and 31 articles were identified in PubMed, Scopus, and Web of Science. The Cochrane risk-of-bias tool for randomized trials (RoB 2) was used to assess each study’s risk of bias. The studies were critically analyzed and categorized into types of biomaterial and functional properties, according to synthesis without meta-analysis (SWiM) guidelines. Despite the heterogeneity between studies, it was observed that chitosan, gelatin, hyaluronic acid, and starch-derived materials exhibit better endoscopic scores and significant potential for use in nasal packing. The published data support the idea that applying a nasal pack after ESS improves wound healing and patient-reported outcomes.
Safety Evaluation and Biodistribution of Fetal Umbilical Cord Mesenchymal Stem Cells-Derived Small Extracellular Vesicles in Sprague Dawley Rats
Umbilical cord mesenchymal stem cells (UCMSCs)-derived small extracellular vehicles (sEVs) are reported to offer therapeutic effects in regenerative medicine, but they lack safety and biodistribution profiles to support smooth translation at the clinical stage and regulatory requirements. Our study aimed to determine the safety and biodistribution profile in a healthy animal model before application in the metabolic syndrome model. Method: Healthy male Sprague Dawley (SD) rats were given an intravenous (IV) injection of normal saline (control group) or pooled fetal UCMSCs-derived sEVs (treated group) every three weeks for 90 days. Morbidity and mortality observation (daily), physical measurements (weekly), selected serum biochemistry (every three weeks), and hematology (every three weeks) were performed for 90 days. Acute toxicity (on day 14) and sub-chronic toxicity (on day 90) were assessed for gross necropsy, relative organ weight, and histopathological assessment of lungs, liver, spleen, kidney, and lymph nodes. Separately, a biodistribution study was conducted with the sEVs preparations labeled with PKH26 fluorescent dye, given intravenously to the rats. The organs were harvested 24 h post-injection. There were no drastic changes in either group’s morbidity or mortality, physical, hematological, and biochemistry evaluation. The histopathological assessment concluded moderate (focal) inflammation in the treated group’s kidneys and signs of recovery from the inflammation and vascular congestion in the liver. A biodistribution study revealed a higher accumulation of sEVs in the spleen. Multiple IV injections of the pooled fetal UCMSCs-derived sEVs in healthy male SD rats were deemed safe. The sEVs were abundantly distributed in the spleen 24 h post-injection.
Role of Olive Bioactive Compounds in Respiratory Diseases
Respiratory diseases recently became the leading cause of death worldwide, due to the emergence of COVID-19. The pathogenesis of respiratory diseases is centred around inflammation and oxidative stress. Plant-based alongside synthetic drugs were considered as therapeutics due to their proven nutraceutical value. One such example is the olive, which is a traditional symbol of the MedDiet. Olive bioactive compounds are enriched with antioxidant, anti-inflammatory, anticancer and antiviral properties. However, there are few studies relating to the beneficial effect of olive bioactive compounds on respiratory diseases. A vague understanding of its molecular action, dosage and bioavailability limits its usefulness for clinical trials about respiratory infections. Hence, our review aims to explore olive bioactive compound’s antioxidant, anti-inflammatory and antiviral properties in respiratory disease defence and treatment. Molecular insight into olive compounds’ potential for respiratory system protection against inflammation and ensuing infection is also presented. Olive bioactive compounds mainly protect the respiratory system by subsiding proinflammatory cytokines and oxidative stress.
Unveiling TIMPs: A Systematic Review of Their Role as Biomarkers in Atherosclerosis and Coronary Artery Disease
Coronary artery disease (CAD) is the leading cause of death globally and is a heart condition involving insufficient blood supply to the heart muscle due to atherosclerotic plaque formation. Atherosclerosis is a chronic disease in which plaques, made up of fat, cholesterol, calcium, and other substances, build up on the inner walls of arteries. Recently, there has been growing interest in finding reliable biomarkers to understand the pathogenesis and progression of atherosclerosis. Tissue Inhibitors of Metalloproteinases (TIMPs) have emerged as potential candidates for monitoring atherosclerotic development. TIMPs are a family of endogenous proteins that regulate matrix metalloproteinases (MMPs), enzymes involved in remodeling the extracellular matrix. A systematic search using Prisma guidelines was conducted and eleven studies were selected from four different databases: Web of Science (WOS), Scopus, Ovid, and PubMed. The Newcastle–Ottawa Scale (NOS) score was used to assess the risk of bias for each study. A meta-analysis was performed, and the hazard ratio (HR) and its 95% confidence interval (CI) were determined. Among the eleven studies, six reported a positive association between higher levels of TIMPs and an increased risk of atherosclerosis. Conversely, four studies support low TIMPs with high CAD risk and one study showed no significant association between TIMP-2 G-418C polymorphism and CAD. This divergence in findings underscores the complexity of the relationship between TIMPs, atherosclerosis, and CAD. In addition, a meta-analysis from two studies yielded a HR (95% CI) of 1.42 (1.16–1.74; p < 0.001; I2 = 0%) for TIMP-2 in predicting major adverse cardiovascular events (MACEs). In conclusion, the existing evidence supports the notion that TIMPs can serve as biomarkers for predicting the severity of atherosclerosis, myocardial damage, and future MACEs among CAD patients. However, further exploration is warranted through larger-scale human studies, coupled with in vitro and in vivo investigations.
Efficacy and safety of small extracellular vesicle interventions in wound healing and skin regeneration: A systematic review and meta-analysis of animal studies
Small extracellular vesicles (sEVs) have been proposed as a possible solution to the current lack of therapeutic interventions for endogenous skin regeneration. We conducted a systematic review of the available evidence to assess sEV therapeutic efficacy and safety in wound healing and skin regeneration in animal models. 68 studies were identified in Web of Science, Scopus, and PubMed that satisfied a set of prespecified inclusion criteria. We critically analyzed the quality of studies that satisfied our inclusion criteria, with an emphasis on methodology, reporting, and adherence to relevant guidelines (including MISEV2018 and ISCT criteria). Overall, our systematic review and meta-analysis indicated that sEV interventions promoted skin regeneration in diabetic and non-diabetic animal models and influenced various facets of the healing process regardless of cell source, production protocol and disease model. The EV source, isolation methods, dosing regimen, and wound size varied among the studies. Modification of sEVs was achieved mainly by manipulating source cells via preconditioning, nanoparticle loading, genetic manipulation, and biomaterial incorporation to enhance sEV therapeutic potential. Evaluation of potential adverse effects received only minimal attention, although none of the studies reported harmful events. Risk of bias as assessed by the SYRCLE's ROB tool was uncertain for most studies due to insufficient reporting, and adherence to guidelines was limited. In summary, sEV therapy has enormous potential for wound healing and skin regeneration. However, reproducibility and comprehensive evaluation of evidence are challenged by a general lack of transparency in reporting and adherence to guidelines. Methodological rigor, standardization, and risk analysis at all stages of research are needed to promote translation to clinical practice.
The Role and Mechanism of MicroRNA 21 in Osteogenesis: An Update
MicroRNAs are short, single-stranded ribonucleic acids expressed endogenously in the body to regulate gene expression at the post-translational level, with exogenous microRNA offering an attractive approach to therapy. Among the myriad microRNA candidates involved in controlling bone homeostasis and remodeling, microRNA 21 (miR21) is the most abundant. This paper discusses the studies conducted on the role and mechanism of human miR21 (hsa-miR21) in the regulation of bones and the various pathways mediated by miR21, and explores the feasibility of employing exogenous miR21 as a strategy for promoting osteogenesis. From the literature review, it was clear that miR21 plays a dual role in bone metabolism by regulating both bone formation and bone resorption. There is substantial evidence to date from both in vitro and in vivo studies that exogenous miR21 can successfully accelerate new bone synthesis in the context of bone loss due to injury or osteoporosis. This supports the exploration of applications of exogenous miR21 in bone regenerative therapy in the future.
Exploring the Potential of Saphenous Vein Grafts Ex Vivo: A Model for Intimal Hyperplasia and Re-Endothelialization
Coronary artery bypass grafting (CABG) utilizing saphenous vein grafts (SVGs) stands as a fundamental approach to surgically treating coronary artery disease. However, the long-term success of CABG is often compromised by the development of intimal hyperplasia (IH) and subsequent graft failure. Understanding the mechanisms underlying this pathophysiology is crucial for improving graft patency and patient outcomes. Objectives: This study aims to explore the potential of an ex vivo model utilizing SVG to investigate IH and re-endothelialization. Methods: A thorough histological examination of 15 surplus SVG procured from CABG procedures at Hospital Canselor Tuanku Muhriz, Malaysia, was conducted to establish their baseline characteristics. Results: SVGs exhibited a mean diameter of 2.65 ± 0.93 mm with pre-existing IH averaging 0.42 ± 0.13 mm in thickness, alongside an observable lack of luminal endothelial cell lining. Analysis of extracellular matrix components, including collagen, elastin, and glycosaminoglycans, at baseline and after 7 days of ex vivo culture revealed no significant changes in collagen but demonstrated increased percentages of elastin and glycosaminoglycans. Despite unsuccessful attempts at re-endothelialization with blood outgrowth endothelial cells, the established ex vivo SVG IH model underscores the multifaceted nature of graft functionality and patency, characterized by IH presence, endothelial impairment, and extracellular matrix alterations post-CABG. Conclusions: The optimized ex vivo IH model provides a valuable platform for delving into the underlying mechanisms of IH formation and re-endothelialization of SVG. Further refinements are warranted, yet this model holds promise for future research aimed at enhancing graft durability and outcomes for CAD patients undergoing CABG.