Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
LanguageLanguage
-
SubjectSubject
-
Item TypeItem Type
-
DisciplineDiscipline
-
YearFrom:-To:
-
More FiltersMore FiltersIs Peer Reviewed
Done
Filters
Reset
69
result(s) for
"Villa, Igor"
Sort by:
Age discordance and mineralogy
2017
Observations of discordant ages, meaning that an age given by one mineral geochronometer is different from the age given by another geochronometer from the same rock, began in the early days of geochronology. In the late 1950s and 1960s, discordant U-Pb zircon ages were unquestioningly attributed to Pb diffusion at high temperature. Later, the mineralogical properties and the petrogenesis of the zircon crystals being dated was recognized as a key factor in obtaining concordant U-Pb ages. Advances in analytical methods allowed the analysis of smaller and smaller zircon multigrain fractions, then the analysis of individual grains, and even pieces of grains, with higher degrees of concordancy. Further advances allowed a higher analytical precision, a clearer perception of accuracy, and a better statistical resolution of age discordance. As for understanding the cause(s) of discordance, belief revision followed the coupling of imaging, cathodoluminescence (CL), and backscattered electrons (BSE), to in situ dating by secondary ion mass spectrometry (SIMS) or by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). Discordant zircon and other accessory minerals (e.g., monazite, apatite, etc.) often consist of young rims accreted onto/into older cores. Age gradients are sharp, and no Pb diffusion gradients are observed. As U-Pb discordance in crystalline, non-radiation damaged grains is caused by diachronous, heterochemical mineral generations, interpretations of mineral ages, based on the exclusive role of diffusion, are superseded, and closure temperatures of zircon and monazite are irrelevant in geological reality. Other isotopic systems (Rb-Sr, K-Ar) were believed, since the 1960s, to be similarly controlled by the diffusivity of radiogenic daughters. When zircon and monazite discordance were recognized as zone accretion/reaction with sharp boundaries that showed little or no high-temperature diffusive re-equilibration, the other chronometric systems were left behind, and interpretations of mineral ages based on the exclusive role of diffusion survived. The evidence from textural-petrologic imaging (CL, BSE) and element mapping by electron probe microanalyzer (EPMA) or high spatial resolution SIMS or LA-ICP-MS provides the decisive constraints. All microcline and mica geochronometers that have been characterized in detail document patchy textures and evidence for mineral replacement reactions. It is important not to confuse causes and effects; hetero-chemical microstructures are not the cause of Ar and Sr loss; rather, they follow it. Ar and Sr loss by dissolution of the older mineral generation occurs first, heterochemical textures form later, when the replacive assemblage recrystallizes. Heterochemical mineral generations are identified and dated by their Ca/Cl/K systematics in 39Ar-40Ar. Replacive reactions adding or removing Cl, such as, e.g., sericite overgrowths on K-feldspar, retrograde muscovite intergrowths with phengite, etc. are detected by Cl/K vs. Ar/K isotope correlation diagrams. Ca-poor reaction products, such as, e.g., young biotite intergrown with older amphibole, adularia replacing microcline, etc., can be easily identified by Ca/K vs. Ar/K diagrams supported by EPMA analyses. Mixed mineral generations are observed to be the cause of discordant, staircase-shaped age spectra, while step-heating of crystals with age gradients produces concordant plateaus. Age gradients are therefore unrelated to staircase age spectra. There is a profound analogy between the U-Pb, Rb-Sr, and K-Ar systems. Pb and Ar diffusion rates are both much slower than mineral replacement rates for all T < 750 °C. Patchy retrogression textures are always associated with heterochemical signatures (U/Th ratios, REE patterns, Ca/Cl/K ratios). As a rule, single-generation minerals with low amounts of radiation damage give concordant ages, whereas discordance is caused by mixtures of heterochemical, resolvably diachronous, mineral generations in petrologic disequilibrium. This can also include (sub-)grains that have accumulated significant amounts of radiation damage. For accurate geochronology the petrologic characterization with the appropriate technique(s) of the minerals to be dated, and the petrologic context at large, are as essential as the mass spectrometric analyses.
Journal Article
Long-distance connections in the Copper Age: New evidence from the Alpine Iceman’s copper axe
by
Artioli, Gilberto
,
Villa, Igor Maria
,
Kaufmann, Günther
in
Alpine environments
,
Altitude
,
Analytical chemistry
2017
25 years after the discovery in the Ötztal Italian Alps, the 5,300-year-old mummy keeps providing key information on human biological and medical conditions, aspects of everyday life and societal organization in the Copper Age. The hand axe found with the body of the Alpine Iceman is one of the rare copper objects that is firmly dated to the early Copper Age because of the radiocarbon dating of the axe wooden shaft. Here we report the measurement of the lead isotope ratios of the copper blade. The results unambiguously indicate that the source of the metal is the ore-rich area of Southern Tuscany, despite ample evidence that Alpine copper ore sources were known and exploited at the time. The experimental results are discussed within the framework of all the available coeval archaeometallurgical data in Central-Southern Europe: they show that the Alps were a neat cultural barrier separating distinct metal circuits. The direct evidence of raw metal or object movement between Central Italy and the Alps is surprising and provides a new perspective on long-distance relocation of goods and relationships between the early Copper Age cultures in the area. The result is in line with the recent investigations re-evaluating the timing and extent of copper production in Central Italy in the 4th millennium BC.
Journal Article
Tracing wedge-internal deformation by means of strontium isotope systematics of vein carbonates
2022
Radiogenic strontium isotopes (87Sr/86Sr) of vein carbonates play a central role in the tectonometamorphic study of fold-and-thrust belts and accretionary wedges and have been used to document fluid sources and fluxes, for example, along major fault zones. In addition, the 87Sr/86Sr ratios of vein carbonates can trace the diagenetic to metamorphic evolution of pore fluids in accreted sediments. Here we present 87Sr/86Sr ratios of vein carbonates from the Infrahelvetic flysch units of the central European Alps (Glarus Alps, Switzerland), which were accreted to the North Alpine fold-and-thrust belt during the early stages of continental collision. We show that the vein carbonates trace the Sr isotopic evolution of pore fluids from an initial seawater-like signature towards the Sr isotopic composition of the host rock with increasing metamorphic grade. This relationship reflects the progressive equilibration of the pore fluid with the host rock and allows us to constrain the diagenetic to low-grade metamorphic conditions of deformation events, including bedding-parallel shearing, imbricate thrusting, folding, cleavage development, tectonic mélange formation and extension. The strontium isotope systematics of vein carbonates provides new insights into the prograde to early retrograde tectonic evolution of the Alpine fold-and-thrust belt and helps to understand the relative timing of deformation events.
Journal Article
Multidisciplinary Identification of the Controversial Freedom Fighter Jörg Jenatsch, Assassinated 1639 in Chur, Switzerland
2016
Jörg Jenatsch, a leading freedom fighter during the Thirty Year's War in Graubünden, Switzerland, was assassinated on carnival 1639. Jenatsch's controversial biography and the unclear circumstances of his death inspired the formation of various legends, novels and films. In 1959, a skeleton discovered in the cathedral of Chur with remains of wealthy baroque clothing was tentatively attributed to Jenatsch. Here, we reassess the skeleton based on a new exhumation. Our multidisciplinary analysis and the head injuries are consistent with reports of the eyewitnesses of the crime, demonstrating that Jenatsch was killed from behind with a semi-sharp implement, supposedly an axe, as well as by a blow with a broad-surfaced object. Moreover, our facial reconstruction closely matches an oil portrait of Jenatsch, and the HIrisPlex system applied to DNA-extracts from the femoral bone reveals brown eye and dark brown hair colour, which coincides well with the portrait, too. Finally, isotope analysis of the femoral bone and a molar support Jenatsch's high social status, luxury diet and a high mobility in the last decade of his life. This multidisciplinary approach thus reinforces personal identification and provides additional insight into the life of this important historic person beyond written resources.
Journal Article
The Montecristo mining district, northern Chile: the relationship between vein-like magnetite-(apatite) and iron oxide-copper–gold deposits
2023
The Montecristo district, northern Chile, is one of the few places worldwide where there is a direct relationship between magnetite-(apatite) (MtAp) mineralization and iron oxide-copper–gold (IOCG) mineralization. The MtAp mineralization includes Ti-poor magnetite, fluorapatite, and actinolite and is crosscut and partially replaced by a younger IOCG mineralization that includes a second generation of actinolite and magnetite with quartz, chalcopyrite, pyrite, and molybdenite. The MtAp stage at Montecristo is interpreted as the crystallized iron-rich melts that used the pre-existing structures of the Atacama Fault System as conduits. These rocks later acted as a trap for hydrothermal IOCG mineralization. Geochronology data at Montecristo indicate that the host diorite (U–Pb zircon 153.3 ± 1.8 Ma, 2-sigma), MtAp mineralization (40Ar-39Ar in actinolite, 154 ± 2 Ma and 153 ± 4 Ma, 2-sigma), and the IOCG event (Re-Os on molybdenite, 151.8 ± 0.6 Ma, 2-sigma) are coeval within error and took place in a time span of less than 3.4 Ma. The εHfi and εNdi values of the host diorite are + 8.0 to + 9.8 and + 4.3 to + 5.4, respectively. The whole-rock 87Sr/86Sri values of the IOCG mineralization (0.70425 to 0.70442) are in the lower end of those of the MtAp mineralization (0.70426–0.70629). In contrast, εNdi values for the IOCG mineralization (+ 5.4 and + 5.7) fall between those of the MtAp rocks (+ 6.6 to + 7.2) and the host diorite, which suggests that the IOCG event was related to fluids having a more crustal Nd (εNdi < + 5.7) composition than the MtAp mineralization. This likely reflects the mixing of Nd from the MtAp protolith and a deep magmatic-hydrothermal source, very likely an unexposed intrusion equivalent to the host diorite. Sulfur isotope compositions (δ34S, + 0.3 to + 3.4‰) are consistent with a magmatic source.
Journal Article
The early medieval origins of copper ore extraction in the Carpathian Mountains
by
Bajnóczi, Bernadett
,
Mozgai, Viktória
,
Villa, Igor M.
in
11th century
,
8th century
,
9th century
2024
The case study addresses the question of the early medieval revival of copper production in Europe. The focus of the research area is the Carpathian Basin, located on the eastern periphery of the zone influenced by European early medieval processes. The research of where and when early medieval metal production started in the region in our case also provides answers to the question of how the region was linked to the European continental economic network, which is until recently an unresolved problem. Ore extraction and the production of various non-ferrous metals (copper, silver, gold) had important centres in the Carpathian Mountains throughout the Middle Ages until the Modern Era. Concerning the Avar period, our study comprises lead isotope and chemical analyses of ‘Late Avar’ (c. 8th century AD) copper rivets, used for certain purposes alongside the copper alloys predominant in the period. As rivets were selected from the entire Avar cultural area, expanding virtually to all lowland and hilly areas in the Carpathian Basin, results are representative of the entire region. It shows that Avar craftsmen producing large quantities of copper alloy objects in the 8th and the early 9th century were supplied with copper from a single mining district, from the ore deposits of the Slovak Ore Mountains in the today Central Slovakia, a region which became an important metal-processing centre in the 11th century AD.
Journal Article
Lead isotopes of prehistoric copper tools define metallurgical phases in Late Neolithic and Eneolithic Italy
by
Artioli, Gilberto
,
Villa, Igor Maria
,
Kaufmann, Günther
in
631/181/19/27
,
704/2151/209
,
Alpine region
2024
The diffuse presence of small copper ore deposits in the Alpine area, mostly exploited since Late Medieval times, led most scholars to assume that these deposits may actually be active much earlier and that many of the circulating prehistoric metal objects found in the area were produced with local copper sources. This assumption was recently validated for the Recent Bronze Age through the use of lead isotope tracers, and well supported by the archaeometallurgical evidences found in the South-Eastern Alps. However, the scarcity of available lead isotope data for pre-Bronze Age metals precluded to date the reconstruction of the metal flow through the Late Neolithic and Eneolithic (or Copper Age). Based on 49 new analyses of important archaeological objects from the Alpine region, the Po River Valley and Central Italy, mostly axes dated from the Late Neolithic to the Late Eneolithic, here we show that the diffusion of copper in Northern Italy (approximately 4500–2200 BC) includes three major periods of metal use and/or production, each related to specific ore sources. The South Alpine copper was massively used only starting from the middle of the 3rd millennium BC, in connection or slightly earlier than the Beaker event.
Journal Article
Kinematics and time-resolved evolution of the main thrust-sense shear zone in the Eo-Alpine orogenic wedge (the Vinschgau Shear Zone, eastern Alps)
2023
The Vinschgau Shear Zone (VSZ) is one of the largest and most significant shear zones developed under plastic conditions within the Austroalpine domain, juxtaposing the Ötztal and the Texel units to the Campo, Scharl and Sesvenna units during the building of the Eo-Alpine Orogen. The VSZ dominates the structural setting of a large portion of the central Austroalpine Late Cretaceous thrust stack. In order to fully assess the evolution of the VSZ, a multi-faceted approach based on detailed multiscale structural and petrochronological analyses has been carried out across representative transects of the shear zone in the Vinschgau Valley. The research has been performed with a view to characterizing kinematics, P–T conditions and timing of motion of the VSZ. Our fieldwork-based analyses suggest that the dip angle of mylonitic foliation increases from west to east with an E–W-trending stretching lineation which dips alternatively to the west and to the east, due to later folding related to the Cenozoic crustal shortening. The dominant top-to-W shear sense of the mylonites recognized in the field and confirmed by microstructural analyses led to exhumation of the upper Austroalpine nappes in the hanging wall of the shear zone; the Texel unit with Late Cretaceous eclogites and the Schneeberg and Ötztal units were all affected by Eo-Alpine amphibolite-facies metamorphism. Chemical and microstructural analyses suggest deformation temperatures of ca. 350–400 ∘C during shearing. Timing of deformation along the VSZ has been constrained for the first time through 40Ar/39Ar dating of syn-shearing micas, which reveal a Late Cretaceous age of the VSZ mylonites with ages ranging between 80 and 97 Ma. A systematic younging age of deformation occurs towards the central part of the shear zone in the studied transects. Vorticity analysis shows a clear decrease in the simple shear component correlated to the younging of mica ages towards the core of the shear zone. This evolution is consistent with the growth of a shear zone where shear strain localizes into its central part during deformation. The defined evolution of the VSZ sheds new light on how large-scale thrust-sense shear zones act and how much exhumation they can accommodate in the frame of an evolving orogenic wedge.
Journal Article
A re-examination of petrogenesis and sup.40Ar/sup.39Ar systematics in the Chain of Ponds K-feldspar: \diffusion domain\ archetype versus polyphase hygrochronology
by
Villa, Igor M
,
Chafe, Alex N
,
Hanchar, John M
in
Comparative analysis
,
Geochronology
,
Petrogenesis
2014
K-feldspar (Kfs) from the Chain of Ponds Pluton (CPP) is the archetypal reference material, upon which thermochronological modeling of Ar diffusion in discrete \"domains\" was founded. We re-examine the CPP Kfs using cathodoluminescence and back-scattered electron imaging, transmission electron microscopy, and electron probe microanalysis. [sup.40]Ar/[sup.39]Ar stepwise heating experiments on different sieve fractions, and on handpicked and unpicked aliquots, are compared. Our results reproduce the staircase-shaped age spectrum and the Arrhenius trajectory of the literature sample, confirming that samples collected from the same locality have an identical Ar isotope record. Even the most pristine-looking Kfs from the CPP contains successive generations of secondary, metasomatic/retrograde mineral replacements that post-date magmatic crystallization. These chemically and chronologically distinct phases are responsible for its staircase-shaped age spectra, which are modified by handpicking. While genuine within-grain diffusion gradients are not ruled out by these data, this study demonstrates that the most important control on staircase-shaped age spectra is the simultaneous presence of heterochemical, diachronous post-magmatic mineral growth. At least five distinct mineral species were identified in the Kfs separate, three of which can be traced to external fluids interacting with the CPP in a chemically open system. Sieve fractions have size-shifted Arrhenius trajectories, negating the existence of the smallest \"diffusion domains.\" Heterochemical phases also play an important role in producing nonlinear trajectories. In vacuo degassing rates recovered from Arrhenius plots are neither related to true Fick's Law diffusion nor to the staircase shape of the age spectra. The CPP Kfs used to define the \"diffusion domain\" model demonstrates the predominance of metasomatic alteration by hydrothermal fluids and recrystallization in establishing the natural Ar distribution among different coexisting phases that gives rise to the staircase-shaped age spectrum. Microbeam imaging of textures is as essential for [sup.40]Ar/[sup.39]Ar hygrochronology as it is for U-Pb geochronology.
Journal Article
Enriched asthenosphere melting beneath the nascent North African margin: trace element and Nd isotope evidence in middle–late Triassic alkali basalts from central Sicily (Italy)
by
Tranchina, Annunziata
,
Fiannacca, Patrizia
,
Lustrino, Michele
in
Basalt
,
Continental crust
,
Earth and Environmental Science
2016
During the dismembering of the Pangea supercontinent, middle–late Triassic sub-volcanic alkaline rocks were emplaced in central Sicily. These rocks have an alkali basaltic composition and show OIB-like incompatible element patterns in primitive mantle-normalized diagrams (e.g., enrichments in HFSE and LREE coupled with high HFSE/LILE ratios), as well as slightly positive
ε
Nd
values. Only subtle effects of crustal contamination at shallow depths emerge from geochemical data. These characteristics are very different compared with the Permian calcalkaline magmas from elsewhere in SW Europe still carrying the geochemical signature of modifications related to the Variscan orogeny. The mineralogical, geochemical and isotopic compositions of the investigated samples from central Sicily are also different from the coeval shoshonitic volcano-plutonic formations of Southern Alps (Dolomites). The incompatible element composition and Nd isotopic ratios are consistent with low-degree partial melting of a moderately depleted asthenospheric mantle source, with a negligible involvement of the thinned continental crust. The studied alkaline basalts represent the only known evidence of a segment of the Triassic rift system associated with early Pangea breakup in central Sicily. The close similarity of the central Sicily Triassic alkali basalts with coeval basalts emplaced along former orogenic sutures across the peri-Mediterranean area suggests a common origin related, at least partly, to asthenospheric passive upwelling following the tectonic collapse of the Variscan Belt. These rocks provide new constraints on the spatial–temporal distribution, magma source evolution and geodynamic meaning of the widespread Permo-Triassic basic magmatism developed after the end of the Variscan Orogeny in southwestern Europe.
Journal Article