Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
12 result(s) for "Villarino, Sebastian"
Sort by:
Concepts and methods for landscape multifunctionality and a unifying framework based on ecosystem services
The potential of landscapes to supply multiple benefits to society beyond commodities production has received increasing research and policy attention. Linking the concept of multifunctionality with the ecosystem services (ES) approach offers a promising avenue for producing scientific evidence to inform landscape planning, e.g., about the relative utility of land-sharing and land-sparing. However, the value for decision-making of ES-based multifunctionality assessments has been constrained by a significant conceptual and methodological dispersion. To contribute towards a cohesive framework for landscape multifunctionality, we analyse case studies of joint ES supply regarding ten criteria designed to ultimately answer four aspects: (i) the multifunctionality of what (e.g., landscapes), (ii) the type of multifunctionality (e.g., based on ES synergies), (iii) the procedure of multifunctionality assessments, and (iv) the purpose of multifunctionality. We constructed a typology of methodological approaches based on scores for criteria describing the evaluation method and the level of stakeholder participation in assessments of joint ES supply. Surveyed studies and underlying types of methodological approaches (spatial, socio-spatial, functional, spatio-functional) differed in most criteria. We illustrate the influence of methodological divergence on planning recommendations by comparing two studies employing contrasting approaches (spatial and functional) to assess the joint supply of wildlife habitat and agricultural production in the Argentine Chaco. We distinguish between a pattern-based and process-based multifunctionality, where the latter can only be detected through approaches considering the ecological processes (e.g., ES complementarities) supporting the supply of multiple ES (functional and spatio-functional). Finally, we propose an integrated approach for assessing a socially-relevant process-based multifunctionality.
Carbon Storage in Cropland Soils: Insights from Iowa, United States
The restoration of soil organic matter (SOM, as measured by soil organic carbon (SOC)) within the world’s agricultural soils is imperative to sustaining crop production and restoring other ecosystem services. We compiled long-term studies on the effect of management practices on SOC from Iowa, USA—an agricultural region with relatively high-quality soil data—to highlight constraints on detecting changes in SOC and inform research needed to improve SOC measurement and management. We found that strip-tillage and no-tillage increased SOC by 0.25–0.43 Mg C ha−1 yr−1 compared to losses of 0.24 to 0.46 Mg C ha−1 yr−1 with more intensive tillage methods. The conversion of cropland to perennial grassland increased SOC by 0.21–0.74 Mg C ha−1 yr−1. However, diversifying crop rotations with extended rotations, and supplementing synthetic fertilizer with animal manure, had highly variable and inconsistent effects on SOC. The improved prediction of changes in SOC requires: the use of methods that can identify and disentangle multiple sources of variability; looking beyond total SOC and toward systematic collection of data on more responsive and functionally relevant fractions; whole-profile SOC monitoring; monitoring SOC in long-term studies on the effect of multiple conservation practices used in combination; and deeper collaboration between field soil scientists and modelers.
A large nitrogen supply from the stable mineral-associated soil organic matter fraction
Soil organic matter (SOM) mineralization and nitrogen (N) release are key biogeochemical processes for which the relative contribution of particulate (POM) and mineral-associated organic matter (MAOM) fractions is poorly understood. MAOM is generally considered to be a more stable fraction that contains most of the soil organic N, whereas POM is more readily decomposable and contains less N. Here, we measured variations in the potentially mineralizable N from each SOM fraction across three contrasting land-uses (forest, pasture, and croplands) and two different grazing managements (rotational and continuous grazing). Contrary to expectations, we found that the MAOM fraction consistently supplied more N than the POM fraction during SOM mineralization in all land-uses evaluated. Across our environmental gradient, potentially mineralizable N from POM increased with the carbon (C) concentration and C/N ratio of POM, while potentially mineralizable N from MAOM increased with the C concentration of MAOM but decreased with clay content. Our work suggests that MAOM contributions to short-term N mineralization and N supply to plants have been undervalued.
Future scenarios of land use change in the Gran Chaco: how far is zero-deforestation?
The Gran Chaco (Argentina, Paraguay, Bolivia and Brazil) has turned into a global deforestation hotspot as a consequence of the agricultural expansion. These land use changes can lead to large socio-ecological conflicts. To reduce adverse effects, common regional planning is needed, which requires diagnostic and prospective information on the territorial dynamics. In this context, we analyzed possible land use change threats over time according to four scenarios of agricultural expansion under different degrees of market opening and state regulation (inertial scenario, high transformation scenario, low transformation scenario, and rigorous law enforcement). Additionally, we identified areas of high susceptibility to deforestation by combining the spatial information from each scenario. We found that the magnitude of the land use changes in the Gran Chaco varies across scenarios, with common spatial patterns of change in the areas adjacent to paddocks previously deforested. This work contributed to a better understanding of the land use change patterns and to envisioning the potential consequences of alternative future land use change scenarios in the Gran Chaco. Particularly, deforestation was analyzed to measure the gap between scenarios and the internationally assumed zero-deforestation objectives. We also identified the areas of greater susceptibility to deforestation where protection efforts should be prioritized when designing future land-use policies and forest governance systems. We demonstrated how scenario generation and simulation models can provide deep insights into the spatiotemporal patterns of deforestation hotspot regions for more sustainable land use planning.
Soil organic carbon stocks in native forest of Argentina: a useful surrogate for mitigation and conservation planning under climate variability
BackgroundThe nationally determined contribution (NDC) presented by Argentina within the framework of the Paris Agreement is aligned with the decisions made in the context of the United Nations Framework Convention on Climate Change (UNFCCC) on the reduction of emissions derived from deforestation and forest degradation, as well as forest carbon conservation (REDD+). In addition, climate change constitutes one of the greatest threats to forest biodiversity and ecosystem services. However, the soil organic carbon (SOC) stocks of native forests have not been incorporated into the Forest Reference Emission Levels calculations and for conservation planning under climate variability due to a lack of information. The objectives of this study were: (i) to model SOC stocks to 30 cm of native forests at a national scale using climatic, topographic and vegetation as predictor variables, and (ii) to relate SOC stocks with spatial–temporal remotely sensed indices to determine biodiversity conservation concerns due to threats from high inter-annual climate variability.MethodsWe used 1040 forest soil samples (0–30 cm) to generate spatially explicit estimates of SOC native forests in Argentina at a spatial resolution of approximately 200 m. We selected 52 potential predictive environmental covariates, which represent key factors for the spatial distribution of SOC. All covariate maps were uploaded to the Google Earth Engine cloud-based computing platform for subsequent modelling. To determine the biodiversity threats from high inter-annual climate variability, we employed the spatial–temporal satellite-derived indices based on Enhanced Vegetation Index (EVI) and land surface temperature (LST) images from Landsat imagery.ResultsSOC model (0–30 cm depth) prediction accounted for 69% of the variation of this soil property across the whole native forest coverage in Argentina. Total mean SOC stock reached 2.81 Pg C (2.71–2.84 Pg C with a probability of 90%) for a total area of 460,790 km2, where Chaco forests represented 58.4% of total SOC stored, followed by Andean Patagonian forests (16.7%) and Espinal forests (10.0%). SOC stock model was fitted as a function of regional climate, which greatly influenced forest ecosystems, including precipitation (annual mean precipitation and precipitation of warmest quarter) and temperature (day land surface temperature, seasonality, maximum temperature of warmest month, month of maximum temperature, night land surface temperature, and monthly minimum temperature). Biodiversity was influenced by the SOC levels and the forest regions.ConclusionsIn the framework of the Kyoto Protocol and REDD+, information derived in the present work from the estimate of SOC in native forests can be incorporated into the annual National Inventory Report of Argentina to assist forest management proposals. It also gives insight into how native forests can be more resilient to reduce the impact of biodiversity loss.
A multi-model approach to explore sustainable food and land use pathways for Argentina
In Argentina, current food and land-use systems are drivers of greenhouse gas emissions, biodiversity loss, nutrient outflows, chemical pollution and water stress, while they fail to produce sustainable livelihoods for farmers and herders. Argentina must transition toward more sustainable food and land-use systems to achieve the sustainable development goals (SDGs) and the objectives of the Paris Agreement. Here, we present mid-century food and land-use system pathways to achieve biodiversity, freshwater use, food production and greenhouse gas emission targets, co-developed with the government, research and civil society stakeholders. We used a multi-model approach, integrating outputs from a food system and land-use accounting tool (FABLE calculator), a land-use allocation model (Dinamica EGO) and a spatially explicit conservation prioritization approach (NatureMap) to construct a carbon neutral, actionable food system and land-use scenario that could also lead to the achievement of biodiversity, freshwater use, food production and carbon storage targets by 2050. Such integrated approaches are rare, despite their high value for helping cross-sectoral experts and policymakers cut through complexity to find pathways to achieve multiple sustainability objectives in tandem. This paper presents a nationally designed transferable methodology to: (1) construct a carbon neutral pathway toward 2050, (2) create spatially explicit land-use projections, (3) detect and assess trade-offs between sustainability goals, (4) modify this pathway to foster co-benefits and (5) work toward concurrent attainment of multiple SDGs. Preliminary results suggest Argentina is well suited to meet multiple SDGs, provided businesses, civil society and government agree to several key commitments, including completely halting deforestation, promoting afforestation and reforestation, and increasing agricultural productivity to spare natural lands.
A large nitrogen supply from the stable mineral-associated soil organic matter fraction
Soil organic matter (SOM) mineralization and nitrogen (N) release are key biogeochemical processes for which the relative contribution of particulate (POM) and mineral-associated organic matter (MAOM) fractions is poorly understood. MAOM is generally considered to be a more stable fraction that contains most of the soil organic N, whereas POM is more readily decomposable and contains less N. We measured variations in the potentially mineralizable N from each SOM fraction across three contrasting land uses (forest, pasture, and croplands) and two different grazing managements (rotational and continuous grazing). Contrary to expectations, we found that the MAOM fraction consistently supplied more N than the POM fraction during SOM mineralization in all land-uses evaluated. Across our environmental gradient, potentially mineralizable N from POM increased with the carbon (C) concentration and C/N ratio of POM, while potentially mineralizable N from MAOM increased with the C concentration of MAOM but decreased with clay content. Our work suggests that MAOM contributions to short-term N mineralization and N supply to plants have been undervalued.
Whole Learning with Agricultural Innovation: A Teaching Case on Adding an Anaerobic Digester to an Iowa Farm
SOC loss through decomposition leads to carbon dioxide emissions (under aerobic conditions) and methane emissions (under anaerobic conditions). [...]addressing the maintenance and restoration of SOC and soil nutrients is crucial to addressing the interlinked global crises. Meat is a reliable source of nutrition globally, but animal agriculture can have detrimental environmental impacts when poorly managed, including negative climate impacts. In particular, we highlight two aspects of the problem-SOC dynamicsand nutrient availability-and set aside other related but more complex ones, like soil physical properties and the life cycle assessment of agricultural and energy outputs.
Trade Publication Article
From field experiments to salinity products: a tribute to the contributions of Jordi Font to the SMOS mission
This article summarizes some of the activities in which Jordi Font, research professor and head of the Department of Physical and Technological Oceanography, Institut de Ciències del Mar (CSIC, Spanish National Research Council) in Barcelona, has been involved as co-Principal Investigator for Ocean Salinity of the European Space Agency Soil Moisture and Ocean Salinity (SMOS) Earth Explorer Mission from the perspective of the Remote Sensing Lab at the Universitat Politècnica de Catalunya. We have probably left out some of his many contributions to salinity remote sensing, but we hope that this review will give an idea of the importance of his work. We focus on the following issues: 1) the new accurate measurements of the sea water dielectric constant, 2) the WISE and EuroSTARRS field experiments that helped to define the geophysical model function relating brightness temperature to sea state, 3) the FROG 2003 field experiment that helped to understand the emission of sea foam, 4) GNSS-R techniques for improving sea surface salinity retrieval, 5) instrument characterization campaigns, and 6) the operational implementation of the Processing Centre of Levels 3 and 4 at the SMOS Barcelona Expert Centre.