Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Language
      Language
      Clear All
      Language
  • Subject
      Subject
      Clear All
      Subject
  • Item Type
      Item Type
      Clear All
      Item Type
  • Discipline
      Discipline
      Clear All
      Discipline
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
31 result(s) for "Vilser, Walthard"
Sort by:
Normative data and standard operating procedures for static and dynamic retinal vessel analysis as biomarker for cardiovascular risk
Retinal vessel phenotype is predictive for cardiovascular outcome. This cross-sectional population-based study aimed to quantify normative data and standard operating procedures for static and dynamic retinal vessel analysis. We analysed central retinal arteriolar (CRAE) and venular (CRVE) diameter equivalents, as well as retinal endothelial function, measured by flicker light‐induced maximal arteriolar (aFID) and venular (vFID) dilatation. Measurements were performed in 277 healthy individuals aged 20 to 82 years of the COmPLETE study. The mean range from the youngest compared to the oldest decade was 196 ± 13 to 166 ± 17 µm for CRAE, 220 ± 15 to 199 ± 16 µm for CRVE, 3.74 ± 2.17 to 3.79 ± 2.43% for aFID and 4.64 ± 1.85 to 3.86 ± 1.56% for vFID. Lower CRAE [estimate (95% CI): − 0.52 (− 0.61 to − 0.43)], CRVE [− 0.33 (− 0.43 to − 0.24)] and vFID [− 0.01 (− 0.26 to − 0.00)], but not aFID, were significantly associated with older age. Interestingly, higher blood pressure was associated with narrower CRAE [− 0.82 (− 1.00 to − 0.63)] but higher aFID [0.05 (0.03 to 0.07)]. Likewise, narrower CRAE were associated with a higher predicted aFID [− 0.02 (− 0.37 to − 0.01)]. We recommend use of defined standardized operating procedures and cardiovascular risk stratification based on normative data to allow for clinical implementation of retinal vessel analysis in a personalized medicine approach.
In-vivo assessment of retinal vessel diameters and observer variability in mice: A methodological approach
Central retinal arteriolar (CRAE) and venular (CRVE) diameter equivalents are predictive for cardiovascular and all-cause mortality in humans. The aim of this study was to investigate the inter- and intraobserver variability for the assessment of CRAE and CRVE in mice using fluorescein contrast enhancement as compared to crude analysis. Three high quality images with (F) and without fluorescein (NF) of eight mice (type C57BL) were recorded and analysed by two independent experienced investigators to investigate interobserver variability. In addition, one investigator analysed 20 F and 20 NF images twice to investigate intraobserver variability. The time course of CRAE and CRVE vessel responses after fluorescein injection were recorded in one mouse every 30 seconds for 15 minutes. The interobserver variability was lower in F images compared to NF images for CRAE (r = 0.99, p < 0.001 vs. r = 0.65, p = 0.083) and CRVE (r = 0.99, p < 0.001 vs. r = 0.79, p = 0.019). Intraobserver variability for CRAE (r = 0.99, p < 0.001 vs. r = 0.48, p = 0.032) and CRVE (r = 0.98, p < 0.001 vs. r = 0.86, p < 0.001) were lower in F compared to NF images. Fluorescein injection induced vascular staining mimicking vessel dilation (+14%) followed by a long-lasting stable staining phase well suited for precise measurements. Measurement variability can be optimized by use of fluorescein as contrast enhancement in mice. Standardization for time of image acquisition after fluorescein injection is advisable. Translation of static retinal vessel analysis into a rodent model has the potential to bridge the research gap between proof of concept studies in animals and clinical studies in humans.
Flicker Light-Induced Retinal Vasodilation in Diabetes and Diabetic Retinopathy
OBJECTIVE: Flicker light-induced retinal vasodilation may reflect endothelial function in the retinal circulation. We investigated flicker light-induced vasodilation in individuals with diabetes and diabetic retinopathy. RESEARCH DESIGN AND METHODS: Participants consisted of 224 individuals with diabetes and 103 nondiabetic control subjects. Flicker light-induced retinal vasodilation (percentage increase over baseline diameter) was measured using the Dynamic Vessel Analyzer. Diabetic retinopathy was graded from retinal photographs. RESULTS: Mean ± SD age was 56.5 ± 11.8 years for those with diabetes and 48.0 ± 16.3 years for control subjects. Mean arteriolar and venular dilation after flicker light stimulation were reduced in participants with diabetes compared with those in control subjects (1.43 ± 2.10 vs. 3.46 ± 2.36%, P < 0.001 for arteriolar and 2.83 ± 2.10 vs. 3.98 ± 1.84%, P < 0.001 for venular dilation). After adjustment for age, sex, diabetes duration, fasting glucose, cholesterol and triglyceride levels, current smoking status, systolic blood pressure, and use of antihypertensive and lipid-lowering medications, participants with reduced flicker light-induced vasodilation were more likely to have diabetes (odds ratio 19.7 [95% CI 6.5-59.1], P < 0.001 and 8.14 [3.1-21.4], P < 0.001, comparing lowest vs. highest tertile of arteriolar and venular dilation, respectively). Diabetic participants with reduced flicker light-induced vasodilation were more likely to have diabetic retinopathy (2.2 [1.2-4.0], P = 0.01 for arteriolar dilation and 2.5 [1.3-4.5], P = 0.004 for venular dilation). CONCLUSIONS: Reduced retinal vasodilation after flicker light stimulation is independently associated with diabetes status and, in individuals with diabetes, with diabetic retinopathy. Our findings may therefore support endothelial dysfunction as a pathophysiological mechanism underlying diabetes and its microvascular manifestations.
Non-invasive evaluation of neurovascular coupling in the murine retina by dynamic retinal vessel analysis
Impairment of neurovascular coupling (NVC) was recently reported in the context of subarachnoid hemorrhage and may correlate with disease severity and outcome. However, previous techniques to evaluate NVC required invasive procedures. Retinal vessels may represent an alternative option for non-invasive assessment of NVC. A prototype of an adapted retinal vessel analyzer was used to assess retinal vessel diameter in mice. Dynamic vessel analysis (DVA) included an application of monochromatic flicker light impulses in predefined frequencies for evaluating NVC. All retinae were harvested after DVA and electroretinograms were performed. A total of 104 retinal scans were conducted in 21 male mice (90 scans). Quantitative arterial recordings were feasible only in a minority of animals, showing an emphasized reaction to flicker light impulses (8 mice; 14 scans). A characteristic venous response to flicker light, however, could observed in the majority of animals. Repeated measurements resulted in a significant decrease of baseline venous diameter (7 mice; 7 scans, p < 0.05). Ex-vivo electroretinograms, performed after in-vivo DVA, demonstrated a significant reduction of transretinal signaling in animals with repeated DVA (n = 6, p < 0.001). To the best of our knowledge, this is the first non-invasive study assessing murine retinal vessel response to flicker light with characteristic changes in NVC. The imaging system can be used for basic research and enables the investigation of retinal vessel dimension and function in control mice and genetically modified animals.
Influence of Flickering Light on the Retinal Vessels in Diabetic Patients
OBJECTIVE:--Stimulation of the retina with flickering light increases retinal vessel diameters in humans. Nitric oxide is a mediator of the retinal vasodilation to flicker. The reduction of vasodilation is considered an endothelial dysfunction. We investigated the response of retinal vessels to flickering light in diabetic patients in different stages of diabetic retinopathy. RESEARCH DESIGN AND METHODS--We studied 53 healthy volunteers, 68 type 1 diabetic patients, and 172 type 2 diabetic patients. The diameter of retinal vessels was measured continuously online with the Dynamic Vessel Analyzer (DVA). Diabetic retinopathy was classified using Early Treatment Diabetic Retinopathy Study criteria. Changes in vasodilation are expressed as percent change over baseline values. RESULTS:--After adjustments for age, sex, and antihypertensive treatment, the response of retinal arterioles to diffuse luminance flicker was significantly diminished in patients with type 1 diabetes compared with healthy volunteers. The vasodilation of retinal arterioles and venules decreased continuously with increasing stages of diabetic retinopathy. The retinal arterial diameter change was 3.6 ± 2.1% in the control group, 2.6 ± 2.5% in the no diabetic retinopathy group, 2.0 ± 2.7% in the mild nonproliferative diabetic retinopathy (NPDR) group, 1.6 ± 2.2% in the moderate NPDR group, 1.8 ± 1.9% in severe NPDR group, and 0.8 ± 1.6% in proliferative diabetic retinopathy group. CONCLUSIONS:--Flicker responses of retinal vessels are abnormally reduced in diabetic patients. This decreased response deteriorated with increasing stages of retinopathy. The response was already reduced before clinical appearance of retinopathy. The noninvasive testing of retinal autoregulation with DVA might prove to be of value in early detection of diabetic vessel pathological changes.
Retinal Vessel Analysis (RVA) in the Context of Subarachnoid Hemorrhage - A Proof of Concept Study
Timely detection of impending delayed cerebral ischemia after subarachnoid hemorrhage (SAH) is essential to improve outcome, but poses a diagnostic challenge. Retinal vessels as an embryological part of the intracranial vasculature are easily accessible for analysis and may hold the key to a new and non-invasive monitoring technique. This investigation aims to determine the feasibility of standardized retinal vessel analysis (RVA) in the context of SAH. In a prospective pilot study, we performed RVA in six patients awake and cooperative with SAH in the acute phase (day 2-14) and eight patients at the time of follow-up (mean 4.6±1.7months after SAH), and included 33 age-matched healthy controls. Data was acquired using a manoeuvrable Dynamic Vessel Analyzer (Imedos Systems UG, Jena) for examination of retinal vessel dimension and neurovascular coupling. Image quality was satisfactory in the majority of cases (93.3%). In the acute phase after SAH, retinal arteries were significantly dilated when compared to the control group (124.2±4.3MU vs 110.9±11.4MU, p<0.01), a difference that persisted to a lesser extent in the later stage of the disease (122.7±17.2MU, p<0.05). Testing for neurovascular coupling showed a trend towards impaired primary vasodilation and secondary vasoconstriction (p = 0.08, p = 0.09 resp.) initially and partial recovery at the time of follow-up, indicating a relative improvement in a time-dependent fashion. RVA is technically feasible in patients with SAH and can detect fluctuations in vessel diameter and autoregulation even in less severely affected patients. Preliminary data suggests potential for RVA as a new and non-invasive tool for advanced SAH monitoring, but clinical relevance and prognostic value will have to be determined in a larger cohort.
Retinal vessel caliber and its relationship with nocturnal blood pressure dipping status: the SABPA study
Adverse changes in retinal microvasculature caliber are associated with incident hypertension, coronary heart disease and stroke. The absence of a nocturnal dipping in arterial pressure may induce changes throughout the vascular tree, including the retinal microvasculature, but the later link is not sufficiently studied. We explored the relationship between retinal vessel caliber and dipping status in a group of black and white teachers. The study included black (n=68) and white (n=81) men (24-66 years) from the SABPA study. We measured 24 h ambulatory blood pressure and the percentage mean arterial pressure dipping(%MAPdip) was calculated as (diurnal MAP-nocturnal MAP)/diurnal MAP × 100. Retinal images were captured and the central retinal artery equivalent (CRAE) and central retinal vein equivalent (CRVE) calculated. Black men demonstrated higher diurnal and nocturnal MAP (P⩽0.001) and a lesser %MAPdip compared with white men (P=0.047). When stratified by dipping status, black non-dippers (n=33) revealed an increased CRVE (P<0.001) compared with their dipper counterparts (n=35). In black men, CRVE was negatively (R =0.38, β=-0.47, P<0.001) associated with %MAPdip independent of 24 h MAP or nocturnal MAP. CRVE also associated negatively with dipping status as a dichotomized variable (R =0.29, β=-0.32, P=0.006), independent of 24 h MAP. These associations were absent in the white men. In conclusion, in this group of black men, a non-dipping blood pressure profile was associated with a larger CRVE, suggesting microvascular deterioration due to the absence of nocturnal dipping in blood pressure. This may add to our understanding of the stroke risk in black populations.
Vasoconstriction and Impairment of Neurovascular Coupling after Subarachnoid Hemorrhage: a Descriptive Analysis of Retinal Changes
Impaired cerebral autoregulation and neurovascular coupling (NVC) contribute to delayed cerebral ischemia after subarachnoid hemorrhage (SAH). Retinal vessel analysis (RVA) allows non-invasive assessment of vessel dimension and NVC hereby demonstrating a predictive value in the context of various neurovascular diseases. Using RVA as a translational approach, we aimed to assess the retinal vessels in patients with SAH. RVA was performed prospectively in 24 patients with acute SAH (group A: day 5–14), in 11 patients 3 months after ictus (group B: day 90 ± 35), and in 35 age-matched healthy controls (group C). Data was acquired using a Retinal Vessel Analyzer (Imedos Systems UG, Jena) for examination of retinal vessel dimension and NVC using flicker-light excitation. Diameter of retinal vessels—central retinal arteriolar and venular equivalent—was significantly reduced in the acute phase ( p  < 0.001) with gradual improvement in group B ( p  < 0.05). Arterial NVC of group A was significantly impaired with diminished dilatation ( p  < 0.001) and reduced area under the curve ( p  < 0.01) when compared to group C. Group B showed persistent prolonged latency of arterial dilation ( p  < 0.05). Venous NVC was significantly delayed after SAH compared to group C (A p  < 0.001; B p  < 0.05). To our knowledge, this is the first clinical study to document retinal vasoconstriction and impairment of NVC in patients with SAH. Using non-invasive RVA as a translational approach, characteristic patterns of compromise were detected for the arterial and venous compartment of the neurovascular unit in a time-dependent fashion. Recruitment will continue to facilitate a correlation analysis with clinical course and outcome.
7.5 RETINAL VESSEL RESPONSES TO FLICKERING LIGHT PROVOCATION IN A COHORT OF BLACK AND WHITE TEACHERS: THE SABPA STUDY
Background: Retinal microvascular function can be assessed using flicker light induced provocation (FLIP). Reduced vessel dilation responses to FLIP are noted in various disease conditions. Comparative studies between ethnic groups are scarce, while the importance of different phases of the vessel responses during and following FLIP are not well studied. We compared retinal vessel dilation, constriction and vessel diameter parameters following FLIP in a cohort of black (n=152) and white (n=178) teachers. Methods: Retinal vessel responses to FLIP were assessed using the Dynamic Vessel Analyzer (IMEDOS Systems, Jena, Germany). Ambulatory blood pressure (BP), anthropometry and blood sampling were performed. Results: Black participants displayed a better maximum percentage dilation (artery: 4.1±3.5% vs. 3.5±2.0%, p<0.015 vein: 4.2 (2.2–8.7)% vs. 3.7 (1.4–8.0)%, p=0.014) in response to FLIP. Time to maximum artery constriction (MaxCons) was longer (52.0 (44.0–66.0)s vs. 44.0 (37.0–54.0)s, p<0.001), and end FLIP artery diameter was smaller in the black cohort. In linear regression analysis, artery dilation was generally associated with age, BP, BP medication and artery caliber, and mostly in the black cohort. In the black cohort, artery MaxCons was not associated with selected cardiometabolic variables, but in the white cohort, was related to age, gamma-glutamyltransferase and no BP medication. A smaller artery diameter post FLIP associated with increased C-reactive protein in both ethnicities. Conclusions: Black and white participants differed in their retinal vessel response to FLIP. Although certain cardiovascular risk markers were associated with these responses, they may not explain all the differences noted between the groups.
In-vivo assessment of retinal vessel diameters and observer variability in mice: A methodological approach
Central retinal arteriolar (CRAE) and venular (CRVE) diameter equivalents are predictive for cardiovascular and all-cause mortality in humans. The aim of this study was to investigate the inter- and intraobserver variability for the assessment of CRAE and CRVE in mice using fluorescein contrast enhancement as compared to crude analysis. Three high quality images with (F) and without fluorescein (NF) of eight mice (type C57BL) were recorded and analysed by two independent experienced investigators to investigate interobserver variability. In addition, one investigator analysed 20 F and 20 NF images twice to investigate intraobserver variability. The time course of CRAE and CRVE vessel responses after fluorescein injection were recorded in one mouse every 30 seconds for 15 minutes. The interobserver variability was lower in F images compared to NF images for CRAE (r = 0.99, p < 0.001 vs. r = 0.65, p = 0.083) and CRVE (r = 0.99, p < 0.001 vs. r = 0.79, p = 0.019). Intraobserver variability for CRAE (r = 0.99, p < 0.001 vs. r = 0.48, p = 0.032) and CRVE (r = 0.98, p < 0.001 vs. r = 0.86, p < 0.001) were lower in F compared to NF images. Fluorescein injection induced vascular staining mimicking vessel dilation (+14%) followed by a long-lasting stable staining phase well suited for precise measurements. Measurement variability can be optimized by use of fluorescein as contrast enhancement in mice. Standardization for time of image acquisition after fluorescein injection is advisable. Translation of static retinal vessel analysis into a rodent model has the potential to bridge the research gap between proof of concept studies in animals and clinical studies in humans.