Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
27 result(s) for "Vincenti, Maria Antonietta"
Sort by:
Near-infrared to ultra-violet frequency conversion in chalcogenide metasurfaces
Chalcogenide photonics offers unique solutions for a broad range of applications from mid-infrared sensing to integrated, ultrafast, ultrahigh-bandwidth signal processing. However, to date its usage has been limited to the infrared part of the electromagnetic spectrum, thus avoiding ultraviolet and visible ranges due to absorption of chalcogenide glasses. Here, we experimentally demonstrate and report near-infrared to ultraviolet frequency conversion in an As 2 S 3 -based metasurface, enabled by a phase locking mechanism between the pump and the inhomogeneous portion of the third harmonic signal. Due to the phase locking, the inhomogeneous component co-propagates with the pump pulse and encounters the same effective dispersion as the infrared pump, and thus experiences little or no absorption, consequently opening previously unexploited spectral range for chalcogenide glass science and applications, despite the presence of strong material absorption in this range. The use of chalcogenide glass in optical science and applications at the UV frequencies has been so far hindered by its absorption in this spectral region. Here the authors demonstrate that a nanostructured chalcogenide glass can efficiently generate third harmonic radiation, leading to a strong UV light source at the nanoscale.
Unconventional high-harmonic generation in resonant membrane metasurfaces
High-harmonic generation (HHG) in solids has rapidly emerged as a promising platform for creating compact attosecond sources and probing ultrafast electron dynamics. Resonant metasurfaces provide essential features for harmonic generation, increasing its efficiency through local field enhancement and enabling to lift phase matching constraints in the process. Metasurface-enhanced HHG is believed to follow the conventional integer-power scaling laws that hold for non-resonant bulk HHG. Here, we discover that highly resonant metasurfaces driven by quasi-bound states in the continuum break this principle, manifesting non-integer intensity dependencies of the generated harmonic powers. We experimentally and theoretically show that these unconventional nonlinearities are enabled by the strong local fields arising from the high-Q resonances. The resonant local fields substantially alter the contribution of higher-order susceptibility tensors to the effective nonlinearities of the system. Our findings reveal how harmonic generation rooted in modification of effective nonlinear susceptibilities driven by resonant fields can reshape our understanding of light-matter interaction at the nanoscale. High-harmonic generation from metasurfaces is believed to follow conventional power laws with integer exponents. In this work, authors discover that the strong local fields related to a metasurface high-Q resonances can modify the effective nonlinear response and enable the generation of high harmonics following non-integer-power laws.
Efficient GHz electro-optical modulation with a nonlocal lithium niobate metasurface in the linear and nonlinear regime
Electro-optical modulation is essential in optical signal processing and laser technology, yet modulators based on the Pockels effect in flat optics lag behind bulk and integrated platforms in efficiency and speed. We bridge this gap realizing a metasurface based on lithium niobate (LiNbO₃) on insulator that leverages on resonances with quality-factor as high as 8000 to achieve fast electrical modulation of both linear and nonlinear optical properties. LiNbO 3 , well known for its high nonlinear susceptibility and wide transparency window across the infrared and visible spectrum, is employed to realize an asymmetric, one-dimensional array of nanowires, exhibiting resonances with linewidth <0.2 nm. The metasurface achieves a reflectivity modulation around 0.1, with a modulation efficiency, defined as relative modulation per applied Volt, larger than 0.01 V −1 on a −3 dB (−6 dB) bandwidth of about 800 MHz (1.4 GHz). Additionally, we demonstrate more than one order of magnitude intensity modulation of the second harmonic seeded by a continuous-wave laser, with a modulation efficiency of about 0.12 V −1 . This dual modulation capability, rooted in the interplay between optical resonances and electric field manipulation, holds significant potential for cutting-edge applications in high-speed photonics, nonlinear optics, and reconfigurable communication systems. A lithium niobate nonlocal metasurface with high-Q (~8000) resonances demonstrates efficient GHz-rate reflectivity modulation (~0.1) and one order of magnitude second harmonic modulation using sub-10V driving voltages, offering promising applications in high-speed nanophotonics.
Nonlinear spin-orbit coupling in optical thin films
Tunable generation of vortex beams holds relevance in various fields, including communications and sensing. In this paper, we demonstrate the feasibility of nonlinear spin-orbit interactions in thin films of materials with second-order nonlinear susceptibility. Remarkably, the nonlinear tensor can mix the longitudinal and transverse components of the pump field. We observe experimentally our theoretical predictions in the process of second-harmonic generation from a thin film of aluminum gallium arsenide, a material platform widely spread for its role in the advancement of active, nonlinear, and quantum photonic devices. In particular, we prove that a nonlinear thin film can be used to produce vector vortex beams of second-harmonic light when excited by circularly-polarized Gaussian beams. Spin-orbit interaction, and the associated phenomena, is commonly observed in crystalline structure pumped with circularly polarised beam. Here, the authors showed that this is not the case, and used nonlinear thin film to produce vortex beams of second-harmonic light.
Reconfigurable nonlinear response of dielectric and semiconductor metasurfaces
Optically resonant dielectric and semiconductor metasurfaces are an emerging and promising area of nanophotonics and light–matter interaction at the nanoscale. Recently, active tuning of the linear response and nonlinear effects of these components has received an increasing amount of interest. However, so far these research directions have remained separated with only few sporadic works that study their combination beginning to appear in the literature. The evolution of nonlinear metasurfaces based on dielectric and semiconductor materials toward reconfigurable and dynamic components could potentially answer the demand of integrated on-chip components that realize essential functionalities such as frequency conversion, active switching, optical isolation, and all-optical routing. This review provides an overview of recent investigations in this field, reviews the main physical phenomena enabling the dynamic control of the nonlinear response and compares the temporal dynamics of the diverse approaches that have been explored so far. Finally, future directions of dynamic nonlinear metasurfaces are outlined.
Boosting Second Harmonic Radiation from AlGaAs Nanoantennas with Epsilon-Near-Zero Materials
Enhancing the second harmonic conversion efficiency at the nanoscale is a critical challenge in nonlinear optics. Here we propose the use of epsilon-near-zero materials to boost the nonlinear radiation in the far field. Here, a comparison of the second harmonic behavior of a cylindrical AlGaAs nanoantenna placed over different semi-infinite layers is presented. In particular, we observed that the second harmonic generation is strongly enhanced and redirected by the simultaneous presence of a resonance at the fundamental wavelength and a low-permittivity condition in the substrate at the harmonic wavelength. Our results pave the way for a novel approach to enhance optical nonlinearities at the nanoscale.
Intrinsic nonlinear geometric phase in SHG from zincblende crystal symmetry media
We demonstrate that AlGaAs thin films and metasurfaces generate a distinct intrinsic nonlinear geometric phase in their second harmonic signals, differing significantly from previous studies on nonlinear dielectric, plasmonic, or hybrid metasurfaces. Unlike conventional observations, our study reveals that the second harmonic phase remains unaffected by the linear optical response at both pump and harmonic wavelengths, introducing a novel realm of achievable phase functions yet to be explored. Furthermore, we explore the interplay between this intrinsic nonlinear geometric phase and the geometric phase induced by rotations of nanoresonators within metasurface arrangements. Our findings extend the capabilities of nonlinear wavefront shaping metasurfaces, exploiting phase manipulation to uncover unique phenomena exclusive to the nonlinear regime.
All-optical tunable wavelength conversion in opaque nonlinear nanostructures
We demonstrate a simple, femtosecond-scale wavelength tunable, subwavelength-thick nanostructure that performs efficient wavelength conversion from the infrared to the ultraviolet. The output wavelength can be tuned by varying the input power of the infrared pump beam and/or relative delay of the control beam with respect to the pump beam, and does not require any external realignment of the system. The nanostructure is made of chalcogenide glass that possesses strong Kerr nonlinearity and high linear refractive index, leading to strong field enhancement at Mie resonances. Although, as many other materials, chalcogenide glasses absorb in the ultraviolet range, fundamental phase-locking mechanism between the pump and the inhomogeneous portion of the third-harmonic signal enables ultraviolet transmission with little or no absorption.
High-harmonic generation from subwavelength silicon films
Recent years have witnessed significant developments in the study of nonlinear properties of various materials at the nanoscale. Often, experimental results on harmonic generation are reported without the benefit of suitable theoretical models that allow assessment of conversion efficiencies compared to the material’s intrinsic properties. Here, we report experimental observations of th, generated from a suspended subwavelength silicon film resonant in the UV range at 210 nm, the current limit of our detection system, using peak power densities of order 3 TW/cm . We also highlight the time-varying properties of the dielectric function of silicon, which exhibits large changes under intense illumination. We explain the experimental data with a time domain, hydrodynamic-Maxwell approach broadly applicable to most optical materials. Our approach accounts simultaneously for surface and magnetic nonlinearities that generate , as well as linear and nonlinear material dispersions beyond the third order to account for , plasma formation, and a phase locking mechanism that makes the generation of high harmonics possible deep into the UV range, where semiconductors like silicon start operating in a metallic regime.
Second-Harmonic Generation in Mie-Resonant GaAs Nanowires
We investigate the enhancement of second-harmonic generation in cylindrical GaAs nanowires. Although these nanostructures confine light in two dimensions, power conversion efficiencies on the order of 10 − 5 with a pump peak intensity of ~ 1   GW / cm 2 are possible if the pump and the second-harmonic fields are coupled to the Mie-type resonances of the nanowire. We identify a large range of nanowire radii in which a double-resonance condition, i.e., both the pump and the second-harmonic fields excite normal modes of the nanowire, induces a high-quality-factor peak of conversion efficiency. We show that second-harmonic light can be scattered with large efficiency even if the second-harmonic photon energy is larger than 1.42 eV, i.e., the electronic bandgap of GaAs, above which the material is considered opaque. Finally, we evaluate the efficiency of one-photon absorption of second-harmonic light and find that resonant GaAs nanowires absorb second-harmonic light in the near-field region almost at the same rate at which they radiate second-harmonic light in the far-field region.