Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Language
      Language
      Clear All
      Language
  • Subject
      Subject
      Clear All
      Subject
  • Item Type
      Item Type
      Clear All
      Item Type
  • Discipline
      Discipline
      Clear All
      Discipline
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
55 result(s) for "Vingerhoets, Guy"
Sort by:
Knowing about tools: Neural correlates of tool familiarity and experience
The observation of tools is known to elicit a distributed cortical network that reflects close-knit relations of semantic, action-related, and perceptual knowledge. The neural correlates underlying the critical knowledge of skilled tool use, however, remain to be elucidated. In this study, functional magnetic resonance imaging in 14 volunteers compares neural activation during the observation of familiar tools versus equally graspable unfamiliar tools of which the observers have little, if any, functional knowledge. In a second paradigm, the level of tool-experience is investigated by comparing the neural effects of observing frequently versus infrequently used familiar tools. Both familiar and unfamiliar tools activate the classic neural network associated with tool representations. Direct comparison of the activation patterns during the observation of familiar and unfamiliar tools in a priori determined regions of interest (p<0.05, corrected) reveals activation in the temporal (left lateral posterior middle temporal gyrus) and parietal cortices (left supramarginal gyrus, left inferior parietal lobule, and left precuneus). It is hypothesized that the parietal activity underlies tool-use knowledge, with supramarginal gyrus storing information about limb and hand positions, and precuneus storing visuospatial information about hand-tool interactions. As no frontal activation survived this contrast, it appears that premotor activity is unrelated to experience based motor knowledge of tool use/function, but rather, is elicited by any graspable tool. Confrontation with unfamiliar or infrequently used tools reveals an increase in inferior temporal and medial and lateral occipital activation, predominantly in the left hemisphere, suggesting that these regions reflect visual feature processing for tool identification.
Fibre-specific laterality of white matter in left and right language dominant people
Language is the most commonly described lateralised cognitive function, relying more on the left hemisphere compared to the right hemisphere in over 90% of the population. Most research examining the structure-function relationship of language lateralisation only included people showing a left language hemisphere dominance. In this work, we applied a state-of-the-art \"fixel-based\" analysis approach, allowing statistical analysis of white matter micro- and macrostructure on a fibre-specific level in a sample of participants with left and right language dominance (LLD and RLD). Both groups showed a similar extensive pattern of white matter lateralisation including a comparable leftwards lateralisation of the arcuate fasciculus, regardless of their functional language lateralisation. These results suggest that lateralisation of language functioning and the arcuate fasciculus are driven by independent biases. Finally, a significant group difference of lateralisation was detected in the forceps minor, with a leftwards lateralisation in LLD and rightwards lateralisation for the RLD group.
The genetics of situs inversus without primary ciliary dyskinesia
Situs inversus (SI), a left-right mirror reversal of the visceral organs, can occur with recessive Primary Ciliary Dyskinesia (PCD). However, most people with SI do not have PCD, and the etiology of their condition remains poorly studied. We sequenced the genomes of 15 people with SI, of which six had PCD, as well as 15 controls. Subjects with non-PCD SI in this sample had an elevated rate of left-handedness (five out of nine), which suggested possible developmental mechanisms linking brain and body laterality. The six SI subjects with PCD all had likely recessive mutations in genes already known to cause PCD. Two non-PCD SI cases also had recessive mutations in known PCD genes, suggesting reduced penetrance for PCD in some SI cases. One non-PCD SI case had recessive mutations in PKD1L1 , and another in CFAP52 (also known as WDR16 ). Both of these genes have previously been linked to SI without PCD. However, five of the nine non-PCD SI cases, including three of the left-handers in this dataset, had no obvious monogenic basis for their condition. Environmental influences, or possible random effects in early development, must be considered.
Structural perisylvian asymmetry in naturally occurring atypical language dominance
Functional and anatomical hemispheric asymmetries abound in the neural language system, yet the relationship between them remains elusive. One attractive proposal is that structural interhemispheric differences reflect or even drive functional language laterality. However, studies on structure–function couplings either find that left and right language dominant individuals display similar leftward structural asymmetry or yield inconsistent results. The current study aimed to replicate and extend prior work by comparing structural asymmetries between neurologically healthy left-handers with right hemispheric language dominance (N = 24) and typically lateralized left-handed controls (N = 39). Based on structural MRI data, anatomical measures of six ‘language-related’ perisylvian structures were derived, including the surface area of five gray matter regions with known language functions and the FDC (combined fiber density and fiber-bundle cross-sectional area) of the arcuate fasciculus. Only the surface area of the pars triangularis and the anterior insula differed significantly between participant groups, being on average leftward asymmetric in those with typical dominance, but right lateralized in volunteers with atypical language specialization. However, these findings did not survive multiple testing correction and the asymmetry of these structures demonstrated much inter-individual variability in either subgroup. By integrating our findings with those reported previously we conclude that while some perisylvian anatomical asymmetries may differ subtly between typical and atypical speech dominants at the group level, they serve as poor participant-specific predictors of hemispheric language specialization.
Brain structural and functional asymmetry in human situs inversus totalis
Magnetic resonance imaging was used to investigate brain structural and functional asymmetries in 15 participants with complete visceral reversal (situs inversus totalis, SIT). Language-related brain structural and functional lateralization of SIT participants, including peri-Sylvian gray and white matter asymmetries and hemispheric language dominance, was similar to those of 15 control participants individually matched for sex, age, education, and handedness. In contrast, the SIT cohort showed reversal of the brain (Yakovlevian) torque (occipital petalia and occipital bending) compared to the control group. Secondary findings suggested different asymmetry patterns between SIT participants with (n = 6) or without (n = 9) primary ciliary dyskinesia (PCD, also known as Kartagener syndrome) although the small sample sizes warrant cautious interpretation. In particular, reversed brain torque was mainly due to the subgroup with PCD-unrelated SIT and this group also included 55% left handers, a ratio close to a random allocation of handedness. We conclude that complete visceral reversal has no effect on the lateralization of brain structural and functional asymmetries associated with language, but seems to reverse the typical direction of the brain torque in particular in participants that have SIT unrelated to PCD. The observed differences in asymmetry patterns of SIT groups with and without PCD seem to suggest that symmetry breaking of visceral laterality, brain torque, and language dominance rely on different mechanisms.
Tool responsive regions in the posterior parietal cortex: Effect of differences in motor goal and target object during imagined transitive movements
Neuroanatomical and functional studies have proposed a functional segregation of the human dorsal stream into a dorso-dorsal pathway, believed to serve as an object-independent stream involved with on-line control of action, and a ventro-dorsal pathway that provides conceptual input guiding the functional manipulation of objects. We aim to evaluate whether the inferior parietal cortex deals specifically with action reliant on stored knowledge. Fifteen right-handed, normal volunteers varied the intention of their transitive movements by imagining their dominant arm and hand pointing to, grasping to move, grasping to use, or grasping and using three-dimensional representations of target objects depicting graspable neutral shapes, unfamiliar tools, and familiar tools. Imagined movements intended to make functional use of familiar objects revealed increased activation in the left inferior parietal lobule. Compared to gestures aimed at displacing an object, functional (use) intentions elicited activation in the anterior and middle portions of the lateral bank of the intraparietal sulcus, suggesting involvement in the higher order control of action. Compared to functionally unfamiliar objects, grasping movements aimed at familiar tools activated the convex portion of the inferior parietal lobule, suggesting a role for the ventro-dorsal stream in object-selectivity. These data confirm that stored knowledge for the skillful manipulation of familiar tools of right-handed volunteers is predominantly located in the left inferior parietal lobule, and further suggest that tool use-responsive regions and tool object-responsive regions are not identical, but may form a local network in which different nodes contribute differently to the representation of functional tool use in humans.
Damage to Fronto-Parietal Networks Impairs Motor Imagery Ability after Stroke: A Voxel-Based Lesion Symptom Mapping Study
Mental practice with motor imagery has been shown to promote motor skill acquisition in healthy subjects and patients. Although lesions of the common motor imagery and motor execution neural network are expected to impair motor imagery ability, functional equivalence appears to be at least partially preserved in stroke patients. To identify brain regions that are mandatory for preserved motor imagery ability after stroke. Thirty-seven patients with hemiplegia after a first time stroke participated. Motor imagery ability was measured using a Motor Imagery questionnaire and temporal congruence test. A voxelwise lesion symptom mapping approach was used to identify neural correlates of motor imagery in this cohort within the first year post-stroke. Poor motor imagery vividness was associated with lesions in the left putamen, left ventral premotor cortex and long association fibers linking parieto-occipital regions with the dorsolateral premotor and prefrontal areas. Poor temporal congruence was otherwise linked to lesions in the more rostrally located white matter of the superior corona radiata. This voxel-based lesion symptom mapping study confirms the association between white matter tract lesions and impaired motor imagery ability, thus emphasizing the importance of an intact fronto-parietal network for motor imagery. Our results further highlight the crucial role of the basal ganglia and premotor cortex when performing motor imagery tasks.
Mirrored brain organization
Humans demonstrate a prototypical hemispheric functional segregation pattern, with language and praxis lateralizing to the left hemisphere and spatial attention, face recognition, and emotional prosody to the right hemisphere. In this study, we used fMRI to determine laterality for all five functions in each participant. Crucially, we recruited a sample of left-handers preselected for atypical (right) language dominance (n = 24), which allowed us to characterize hemispheric asymmetry of the other functions and compare their functional segregation pattern with that of left-handers showing typical language dominance (n = 39). Our results revealed that most participants with left language dominance display the prototypical pattern of functional hemispheric segregation (44%) or deviate from this pattern in only one function (35%). Similarly, the vast majority of right language dominant participants demonstrated a completely mirrored brain organization (50%) or a reversal for all but one cognitive function (32%). Participants deviating by more than one function from the standard segregation pattern showed poorer cognitive performance, in line with an oft-presumed biological advantage of hemispheric functional segregation.
Human Left Ventral Premotor Cortex Mediates Matching of Hand Posture to Object Use
Visuomotor transformations for grasping have been associated with a fronto-parietal network in the monkey brain. The human homologue of the parietal monkey region (AIP) has been identified as the anterior part of the intraparietal sulcus (aIPS), whereas the putative human equivalent of the monkey frontal region (F5) is located in the ventral part of the premotor cortex (vPMC). Results from animal studies suggest that monkey F5 is involved in the selection of appropriate hand postures relative to the constraints of the task. In humans, the functional roles of aIPS and vPMC appear to be more complex and the relative contribution of each region to grasp selection remains uncertain. The present study aimed to identify modulation in brain areas sensitive to the difficulty level of tool object - hand posture matching. Seventeen healthy right handed participants underwent fMRI while observing pictures of familiar tool objects followed by pictures of hand postures. The task was to decide whether the hand posture matched the functional use of the previously shown object. Conditions were manipulated for level of difficulty. Compared to a picture matching control task, the tool object - hand posture matching conditions conjointly showed increased modulation in several left hemispheric regions of the superior and inferior parietal lobules (including aIPS), the middle occipital gyrus, and the inferior temporal gyrus. Comparison of hard versus easy conditions selectively modulated the left inferior frontal gyrus with peak activity located in its opercular part (Brodmann area (BA) 44). We suggest that in the human brain, vPMC/BA44 is involved in the matching of hand posture configurations in accordance with visual and functional demands.
Transcranial Doppler Ultrasonography Monitoring of Cerebral Hemodynamics During Performance of Cognitive Tasks: A Review
The examination of blood flow velocity (BFV) changes during the performance of mental tasks is one of the applications of transcranial Doppler (TCD) ultrasonography. The purpose of this review is to summarize the results of the functional TCD literature, to investigate the effects of methodological differences between studies, and to provide guidelines for future research. It is concluded that larger series of more homogeneous groups concerning age and handedness, and stricter criteria for subject selection and laboratory setting are required. The implication of quantitative and qualitative performance measures and psychological parameters (motivation, anxiety, and task anticipation) could also yield important information. We recommend future agreement upon a more standardized methodology. TCD promises to be a useful tool to provide further insight into the cerebral organization and temporal reactivity of the human brain.