Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
58
result(s) for
"Virdee, Bal"
Sort by:
Frequency-Selective Surface-Based MIMO Antenna Array for 5G Millimeter-Wave Applications
by
Golunski, Lukasz
,
Alibakhshikenari, Mohammad
,
Koziel, Slawomir
in
Antennas
,
Antennas (Electronics)
,
Arrays
2023
In this paper, a radiating element consisting of a modified circular patch is proposed for MIMO arrays for 5G millimeter-wave applications. The radiating elements in the proposed 2 × 2 MIMO antenna array are orthogonally configured relative to each other to mitigate mutual coupling that would otherwise degrade the performance of the MIMO system. The MIMO array was fabricated on Rogers RT/Duroid high-frequency substrate with a dielectric constant of 2.2, a thickness of 0.8 mm, and a loss tangent of 0.0009. The individual antenna in the array has a measured impedance bandwidth of 1.6 GHz from 27.25 to 28.85 GHz for S11 ≤ −10 dB, and the MIMO array has a gain of 7.2 dBi at 28 GHz with inter radiator isolation greater than 26 dB. The gain of the MIMO array was increased by introducing frequency-selective surface (FSS) consisting of 7 × 7 array of unit cells comprising rectangular C-shaped resonators, with one embedded inside the other with a central crisscross slotted patch. With the FSS, the gain of the MIMO array increased to 8.6 dBi at 28 GHz. The radiation from the array is directional and perpendicular to the plain of the MIMO array. Owing to the low coupling between the radiating elements in the MIMO array, its Envelope Correlation Coefficient (ECC) is less than 0.002, and its diversity gain (DG) is better than 9.99 dB in the 5G operating band centered at 28 GHz between 26.5 GHz and 29.5 GHz.
Journal Article
Electronically reconfigurable and conformal triband antenna for wireless communications systems and portable devices
by
Hussain, Niamat
,
Alibakhshikenari, Mohammad
,
Awan, Wahaj Abbas
in
Antennas (Electronics)
,
Electromagnetism
,
Electronics
2022
This paper presents the design of a triband antenna that can be electronically configured to operate at different frequencies. The proposed antenna is design to operate at sub-6GHz bands at 2.45 GHz (ISM, Wi-Fi, and WLAN), 3.3, 3.5 & 3.9 GHz (WiMAX), and 4.1 & 4.9 GHz (4G & 5G). This is achieved by connecting two open-ended stubs to a modified triangular patch radiator using PIN diodes. The antenna’s performance was optimized using a 3D electromagnetic solver and its performance was verified through measurements. Moreover, the conformal analysis done on the antenna shows that the proposed technique can be used in moderately flexible wireless devices without compromising the antenna’s gain, radiation efficiency and radiation patterns. These characteristics makes the proposed antenna applicable for various wireless communication systems and devices.
Journal Article
High-Gain Metasurface in Polyimide On-Chip Antenna Based on CRLH-TL for Sub-Terahertz Integrated Circuits
by
Falcone, Francisco
,
Virdee, Bal S.
,
Alibakhshikenari, Mohammad
in
639/166/987
,
639/301/1005/1007
,
Aluminum
2020
This paper presents a novel on-chip antenna using standard CMOS-technology based on metasurface implemented on two-layers polyimide substrates with a thickness of 500
μ
m. The aluminium ground-plane with thickness of 3
μ
m is sandwiched between the two-layers. Concentric dielectric-rings are etched in the ground-plane under the radiation patches implemented on the top-layer. The radiation patches comprise concentric metal-rings that are arranged in a 3 × 3 matrix. The antennas are excited by coupling electromagnetic energy through the gaps of the concentric dielectric-rings in the ground-plane using a microstrip feedline created on the bottom polyimide-layer. The open-ended feedline is split in three-branches that are aligned under the radiation elements to couple the maximum energy. In this structure, the concentric metal-rings essentially act as series left-handed capacitances
C
L
that extend the effective aperture area of the antenna without affecting its dimensions, and the concentric dielectric rings etched in the ground-plane act as shunt left-handed inductors
L
L
, which suppress the surface-waves and reduce the substrates losses that leads to improved bandwidth and radiation properties. The overall structure behaves like a metasurface that is shown to exhibit a very large bandwidth of 0.350–0.385 THz with an average radiation gain and efficiency of 8.15dBi and 65.71%, respectively. It has dimensions of 6 × 6 × 1 mm
3
that makes it suitable for on-chip implementation.
Journal Article
High-isolation antenna array using SIW and realized with a graphene layer for sub-terahertz wireless applications
by
Salekzamankhani, Shahram
,
Virdee, Bal S.
,
Althuwayb, Ayman A.
in
639/166
,
639/166/987
,
Antennas
2021
This paper presents the results of a study on developing an effective technique to increase the performance characteristics of antenna arrays for sub-THz integrated circuit applications. This is essential to compensate the limited power available from sub-THz sources. Although conventional array structures can provide a solution to enhance the radiation-gain performance however in the case of small-sized array structures the radiation properties can be adversely affected by mutual coupling that exists between the radiating elements. It is demonstrated here the effectiveness of using SIW technology to suppress surface wave propagations and near field mutual coupling effects. Prototype of 2 × 3 antenna arrays were designed and constructed on a polyimide dielectric substrate with thickness of 125 μm for operation across 0.19–0.20 THz. The dimensions of the array were 20 × 13.5 × 0.125 mm
3
. Metallization of the antenna was coated with 500 nm layer of Graphene. With the proposed technique the isolation between the radiating elements was improved on average by 22.5 dB compared to a reference array antenna with no SIW isolation. The performance of the array was enhanced by transforming the patch to exhibit metamaterial characteristics. This was achieved by embedding the patch antennas in the array with sub-wavelength slots. Compared to the reference array the metamaterial inspired structure exhibits improvement in isolation, radiation gain and efficiency on average by 28 dB, 6.3 dBi, and 34%, respectively. These results show the viability of proposed approach in developing antenna arrays for application in sub-THz integrated circuits.
Journal Article
Study on on-Chip Antenna Design Based on Metamaterial-Inspired and Substrate-Integrated Waveguide Properties for Millimetre-Wave and THz Integrated-Circuit Applications
by
Alibakhshikenari, Mohammad
,
See, Chan H.
,
Limiti, Ernesto
in
Antenna design
,
Antennas
,
Bandwidths
2021
This paper presents the results of a study on improving the performance parameters such as the impedance bandwidth, radiation gain and efficiency, as well as suppressing substrate loss of an innovative antenna for on-chip implementation for millimetre-wave and terahertz integrated-circuits. This was achieved by using the metamaterial and the substrate-integrated waveguide (SIW) technologies. The on-chip antenna structure comprises five alternating layers of metallization and silicon. An array of circular radiation patches with metamaterial-inspired crossed-shaped slots are etched on the top metallization layer below which is a silicon layer whose bottom surface is metalized to create a ground plane. Implemented in the silicon layer below is a cavity above which is no ground plane. Underneath this silicon layer is where an open-ended microstrip feedline is located which is used to excite the antenna. The feed mechanism is based on the coupling of the electromagnetic energy from the bottom silicon layer to the top circular patches through the cavity. To suppress surface waves and reduce substrate loss, the SIW concept is applied at the top silicon layer by implementing the metallic via holes at the periphery of the structure that connect the top layer to the ground plane. The proposed on-chip antenna has an average measured radiation gain and efficiency of 6.9 dBi and 53%, respectively, over its operational frequency range from 0.285–0.325 THz. The proposed on-chip antenna has dimensions of 1.35 × 1 × 0.06 mm
3
. The antenna is shown to be viable for applications in millimetre-waves and terahertz integrated-circuits.
Journal Article
High gain/bandwidth off-chip antenna loaded with metamaterial unit-cell impedance matching circuit for sub-terahertz near-field electronic systems
by
Naser-Moghadasi, Mohammad
,
Dayoub, Iyad
,
Virdee, Bal S.
in
639/166/987
,
639/766/1130/2798
,
Antennas
2022
An innovative off-chip antenna (OCA) is presented that exhibits high gain and efficiency performance at the terahertz (THz) band and has a wide operational bandwidth. The proposed OCA is implemented on stacked silicon layers and consists of an open circuit meandering line. It is shown that by loading the antenna with an array of subwavelength circular dielectric slots and terminating it with a metamaterial unit cell, its impedance bandwidth is enhanced by a factor of two and its gain on average by about 4 dB. Unlike conventional antennas, where the energy is dissipated in a resistive load, the technique proposed here significantly reduces losses. The antenna is excited from underneath the antenna by coupling RF energy from an open-circuited feedline through a slot in the ground-plane of the middle substrate layer. The feedline is shielded with another substrate layer which has a ground-plane on its opposite surface to mitigate the influence of the structure on which the antenna is mounted. The antenna has the dimensions 12.3 × 4.5 × 0.905 mm
3
and operates across the 0.137–0.158 THz band corresponding to a fractional bandwidth of 14.23%. Over this frequency range the average measured gain and efficiency are 8.6 dBi and 77%, respectively. These characteristics makes the proposed antenna suitable for integration in sub-terahertz near-field electronic systems such as radio frequency identification (RFID) devices with high spatial resolution.
Journal Article
Improved adaptive impedance matching for RF front-end systems of wireless transceivers
by
Alibakhshikenari, Mohammad
,
See, Chan H.
,
Shukla, Pancham
in
639/166/987
,
639/766/1130
,
Algorithms
2020
In this paper an automatic adaptive antenna impedance tuning algorithm is presented that is based on quantum inspired genetic optimization technique. The proposed automatic quantum genetic algorithm (AQGA) is used to find the optimum solution for a low-pass passive
T
-impedance matching
LC
-network inserted between an RF transceiver and its antenna. Results of the AQGA tuning method are presented for applications across 1.4 to 5 GHz (satellite services, LTE networks, radar systems, and WiFi bands). Compared to existing genetic algorithm-based tuning techniques the proposed algorithm converges much faster to provide a solution. At 1.4, 2.3, 3.4, 4.0, and 5.0 GHz bands the proposed AQGA is on average 75%, 49.2%, 64.9%, 54.7%, and 52.5% faster than conventional genetic algorithms, respectively. The results reveal the proposed AQGA is feasible for real-time application in RF-front-end systems.
Journal Article
Study on improvement of the performance parameters of a novel 0.41–0.47 THz on-chip antenna based on metasurface concept realized on 50 μm GaAs-layer
by
Alibakhshikenari, Mohammad
,
Salekzamankhani, Shahram
,
See, Chan H.
in
639/166
,
639/166/987
,
Antennas
2020
A feasibility study is presented on the performance parameters of a novel on-chip antenna based on metasurface technology at terahertz band. The proposed metasurface on-chip antenna is constructed on an electrically thin high-permittivity gallium arsenide (GaAs) substrate layer. Metasurface is implemented by engraving slot-lines on an array of 11 × 11 circular patches fabricated on the top layer of the GaAs substrate and metallic via-holes implemented in the central patch of each row constituting the array, which connects the patch to the leaky-wave open-ended feeding slot-lines running underneath the patches. The slot-lines are connected to each other with a slit. A waveguide port is used to excite the array via slot-lines that couple the electromagnetic energy to the patches. The metasurface on-chip antenna is shown to exhibit an average measured gain in excess of 10 dBi and radiation efficiency above 60% over a wide frequency range from 0.41 to 0.47 THz, which is significant development over other on-chip antenna techniques reported to date. Dimensions of the antenna are 8.6 × 8.6 × 0.0503 mm
3
. The results show that the proposed GaAs-based metasurface on-chip antenna is viable for applications in terahertz integrated circuits.
Journal Article
A Dual-Band Flexible MIMO Array Antenna for Sub-6 GHz 5G Communications
by
Vincent, Shweta
,
Nayak, Krishnamurthy
,
Pathan, Sameena
in
antenna array
,
Antennas
,
Antennas (Electronics)
2025
This paper presents a novel dual-band flexible antenna, uniquely designed and extended to array as well as MIMO configurations for the Sub-6 GHz band. The single-element monopole antenna features a modified rectangular radiator with two L-strips and a reduced ground plane, enabling a compact dual-band response. The proposed four-element, two-port MIMO configuration is extended from the 1 × 2 array antenna, achieving an overall dimension of 57 × 50 × 0.1 mm3, making it exceptionally compact and flexible compared to existing rigid and bulkier designs. Operating in the 3.6–3.8 GHz and 5.65–5.95 GHz bands, the antenna delivers a high gain of 5.2 dBi and 7.7 dBi, outperforming many designs in terms of gain while maintaining the superior isolation of >22 dB utilizing a defected ground structure (DGS). The design satisfies key MIMO diversity metrics (ECC < 0.05, DG > 9.99) and demonstrates low SAR values (0.0702/0.25 W/kg at 3.75 GHz and 0.175/0.507 W/kg at 5.9 GHz), making it highly suitable for wearable and on-body communication, unlike many rigid counterparts. Fabricated on a flexible polyimide substrate, the antenna addresses challenges such as size, bandwidth, isolation, and safety in MIMO antenna design. The performance, validated through fabrication and measurement, establishes the proposed antenna as a superior alternative to existing MIMO designs for compact, high-performance Sub-6 GHz 5G applications.
Journal Article
An innovative antenna array with high inter element isolation for sub-6 GHz 5G MIMO communication systems
2022
A novel technique is shown to improve the isolation between radiators in antenna arrays. The proposed technique suppresses the surface-wave propagation and reduces substrate loss thereby enhancing the overall performance of the array. This is achieved without affecting the antenna’s footprint. The proposed approach is demonstrated on a four-element array for 5G MIMO applications. Each radiating element in the array is constituted from a 3 × 3 matrix of interconnected resonant elements. The technique involves (1) incorporating matching stubs within the resonant elements, (2) framing each of the four-radiating elements inside a dot-wall, and (3) defecting the ground plane with dielectric slots that are aligned under the dot-walls. Results show that with the proposed approach the impedance bandwidth of the array is increased by 58.82% and the improvement in the average isolation between antennas #1&2, #1&3, #1&4 are 8 dB, 14 dB, 16 dB, and 13 dB, respectively. Moreover, improvement in the antenna gain is 4.2% and the total radiation efficiency is 23.53%. These results confirm the efficacy of the technique. The agreement between the simulated and measured results is excellent. Furthermore, the manufacture of the antenna array using the proposed approach is relatively straightforward and cost effective.
Journal Article