Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
6 result(s) for "Visentin, Rémy"
Sort by:
Structural insights into an atypical secretory pathway kinase crucial for Toxoplasma gondii invasion
Active host cell invasion by the obligate intracellular apicomplexan parasites relies on the formation of a moving junction, which connects parasite and host cell plasma membranes during entry. Invading Toxoplasma gondii tachyzoites secrete their rhoptry content and insert a complex of RON proteins on the cytoplasmic side of the host cell membrane providing an anchor to which the parasite tethers. Here we show that a rhoptry-resident kinase RON13 is a key virulence factor that plays a crucial role in host cell entry. Cryo-EM, kinase assays, phosphoproteomics and cellular analyses reveal that RON13 is a secretory pathway kinase of atypical structure that phosphorylates rhoptry proteins including the components of the RON complex. Ultimately, RON13 kinase activity controls host cell invasion by anchoring the moving junction at the parasite-host cell interface. Host cell invasion by Toxoplasma gondii depends on the heavily phosphorylated RON complex, but the relevance and regulation of these modifications are not understood. Here, the authors identify the kinase RON13 as a key virulence factor, determine its structure and show that it phosphorylates the RON complex.
Naturally acquired blocking human monoclonal antibodies to Plasmodium vivax reticulocyte binding protein 2b
Plasmodium vivax preferentially invades reticulocytes and recognition of these cells is mediated by P. vivax Reticulocyte Binding Protein 2b (PvRBP2b) binding to human Transferrin receptor 1 (TfR1) and Transferrin (Tf). Longitudinal cohort studies in Papua New Guinea, Thailand and Brazil show that PvRBP2b antibodies are correlated with protection against P. vivax infection and disease. Here, we isolate and characterize anti-PvRBP2b human monoclonal antibodies from two individuals in Cambodia with natural P. vivax infection. These antibodies bind with high affinities and map to different regions of PvRBP2b. Several human antibodies block PvRBP2b binding to reticulocytes and inhibit complex formation with human TfR1-Tf. We describe different structural mechanisms for functional inhibition, including either steric hindrance with TfR1-Tf or the reticulocyte membrane. These results show that naturally acquired human antibodies against PvRBP2b can inhibit its function which is important for P. vivax invasion.
RNG2 tethers the conoid to the apical polar ring in Toxoplasma gondii to enable parasite motility and invasion
The conoid is a dynamic, tubulin-based structure conserved across the Apicomplexa that undergoes extrusion during egress, gliding motility, and invasion in Toxoplasma gondii . This organelle traverses the apical polar ring (APR) in response to calcium waves and plays a critical role in controlling parasite motility. While the actomyosin-dependent extrusion of the conoid is beginning to be elucidated, the mechanism by which it remains apically anchored to the APR is still unclear. RNG2, a protein localized to both the conoid and the APR, has emerged as a strong candidate for mediating this connection. Biochemical analysis revealed that RNG2 is an unstable protein, undergoing extensive proteolytic cleavage both in the parasite and in heterologous expression systems. Its biochemical properties, with the presence of large coiled-coil domains, likely facilitate the formation of concatenated assemblies, enabling RNG2 to serve as a dynamic and resilient bridge between the conoid and the APR. Using a combination of iterative ultrastructure expansion microscopy and immunoelectron microscopy, we confirmed the localization of RNG2 to the 22 tethering elements bridging the APR and the conoid. Conditional depletion of RNG2 led to the striking detachment of the intact conoid organelle from the APR, supporting an essential role for RNG2 as a tether. Cryo-electron tomography of conoid-less parasites revealed that, in the absence of RNG2, the apical vesicle remains anchored to the plasma membrane, while the rhoptries follow the detached conoid. Although RNG2 depletion only mildly reduces microneme secretion, the parasites are immotile and exhibit impaired rhoptry discharge, highlighting the critical role of proper conoid anchorage in motility and host cell invasion. Comprehensive mutagenesis of RNG2 identified distinct regions responsible for binding to the conoid and the APR, and demonstrated that the full-length, intact protein is essential for bridging these two structures and for its functional activity. Altogether, RNG2 emerges as a pivotal protein that ensures conoid functionality and coordination in Coccidia.
Naturally acquired blocking human monoclonal antibodies to Plasmodiumvivax reticulocyte binding protein 2b
Plasmodium vivax preferentially invades reticulocytes and recognition of these cells is mediated by P. vivax Reticulocyte Binding Protein 2b (PvRBP2b) binding to human Transferrin receptor 1 (TfR1) and Transferrin (Tf). Longitudinal cohort studies in Papua New Guinea, Thailand and Brazil show that PvRBP2b antibodies are correlated with protection against P. vivax infection and disease. Here, we isolate and characterize anti-PvRBP2b human monoclonal antibodies from two individuals in Cambodia with natural P. vivax infection. These antibodies bind with high affinities and map to different regions of PvRBP2b. Several human antibodies block PvRBP2b binding to reticulocytes and inhibit complex formation with human TfR1-Tf. We describe different structural mechanisms for functional inhibition, including either steric hindrance with TfR1-Tf or the reticulocyte membrane. These results show that naturally acquired human antibodies against PvRBP2b can inhibit its function which is important for P. vivax invasion. Plasmodium vivax reticulocyte binding protein 2b (PvRBP2b) is important for invasion of reticulocytes and PvRBP2b antibodies correlate with protection. Here, Chan et al. isolate and characterize anti-PvRBP2b human monoclonal antibodies and describe mechanisms by which these antibodies inhibit invasion.
RNG2 tethers the conoid to the apical polar ring in Toxoplasma gondii: a key mechanism in parasite motility and invasion
In Toxoplasma gondii, the conoid is a dynamic organelle composed of spiraling tubulin fibers that extrudes during egress, gliding motility, and invasion. This organelle traverses the apical polar ring (APR) in response to calcium waves and plays a critical role in controlling parasite motility. While the actomyosin-dependent extrusion of the conoid is beginning to be understood, the mechanism by which it is anchored apically to the APR remains unclear. RNG2, a protein localized at both the conoid and the APR, has emerged as a key candidate for this function. By combining iterative ultrastructure expansion microscopy and immunoelectron microscopy we discovered that RNG2 forms 22 tethers between the APR and the conoid. The unique biochemical properties of RNG2, including several proteolytic processing events and its ability to form concatenations, enable it to function as a dynamic bridge between these structures. Conditional depletion of RNG2 resulted in the conoid organelle detaching from the APR without compromising the integrity of its structure, thereby confirming RNG2 essential tethering role. Although microneme secretion remains normal, parasites lacking RNG2 were unable to move and impaired in rhoptry discharge, highlighting the conoid’s crucial role in parasite motility and invasion. RNG2 is a pivotal protein that ensures conoid functionality in Coccidia.
Naturally acquired blocking human monoclonal antibodies to Plasmodium vivax reticulocyte binding protein 2b
Plasmodium vivax preferentially invades reticulocytes and recognition of these cells is mediated by P. vivax Reticulocyte Binding Protein 2b (PvRBP2b) binding to human Transferrin receptor 1 (TfR1) and Transferrin (Tf). Longitudinal cohort studies in Papua New Guinea, Thailand and Brazil show that PvRBP2b antibodies are correlated with protection against P. vivax infection and disease. Here, we isolated and characterized anti-PvRBP2b human monoclonal antibodies from two individuals in Cambodia with natural P. vivax infection. These antibodies bind with high affinities and map to different regions of PvRBP2b. Several human antibodies blocked PvRBP2b binding to reticulocytes and inhibited complex formation with human TfR1-Tf. We describe different structural mechanisms for functional inhibition, including either steric hindrance with TfR1-Tf or the reticulocyte membrane. These results show that naturally acquired human antibodies against PvRBP2b can inhibit its function which is important for P. vivax invasion. Competing Interest Statement The authors have declared no competing interest.