Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
17 result(s) for "Vitalii Gorbenko"
Sort by:
Optical and Photoconversion Properties of Ce3+-Doped (Ca,Y)3(Mg,Sc)2Si3O12 Films Grown via LPE Method onto YAG and YAG:Ce Substrates
This work presents a comprehensive study of the structural, luminescent, and photoconversion properties of epitaxial composite phosphor converters based on single crystalline films of Ce3+-activated Ca2−xY1+xMg1+xSc1−xSi3O12:Ce (x = 0–0.25) (CYMSSG:Ce) garnet, grown using the liquid phase epitaxy (LPE) method on single-crystal Y3Al5O12 (YAG) and YAG:Ce substrates. The main goal of this study is to elucidate the structure–composition–property relationships that influence the photoluminescence and photoconversion efficiency of these film–substrate composite converters, aiming to optimize their performance in high-power white light-emitting diode (WLED) applications. Systematic variation in the Y3+/Sc3+/Mg2+ cationic ratios within the garnet structure, combined with the controlled tuning of film thickness (ranging from 19 to 67 µm for CYMSSG:Ce/YAG and 10–22 µm for CYMSSG:Ce/YAG:Ce structures), enabled the precise modulation of their photoconversion properties. Prototypes of phosphor-converted WLEDs (pc-WLEDs) were developed based on these epitaxial structures to assess their performance and investigate how the content and thickness of SCFs affect the colorimetric properties of SCFs and composite converters. Clear trends were observed in the Ce3+ emission peak position, intensity, and color rendering, induced by the Y3+/Sc3+/Mg2+ cation substitution in the film converter, film thickness, and activator concentrations in the substrate and film. These results may be useful for the design of epitaxial phosphor converters with tunable emission spectra based on the epitaxially grown structures of garnet compounds.
Composite Detectors Based on Single-Crystalline Films and Single Crystals of Garnet Compounds
This manuscript summarizes recent results on the development of composite luminescent materials based on the single-crystalline films and single crystals of simple and mixed garnet compounds obtained by the liquid-phase epitaxy growth method. Such composite materials can be applied as scintillating and thermoluminescent (TL) detectors for radiation monitoring of mixed ionization fluxes, as well as scintillation screens in the microimaging techniques. The film and crystal parts of composite detectors were fabricated from efficient scintillation/TL materials based on Ce3+-, Pr3+-, and Sc3+-doped Lu3Al5O12 garnets, as well as Ce3+-doped Gd3−xAxAl5−yGayO12 mixed garnets, where A = Lu or Tb; x = 0–1; y = 2–3 with significantly different scintillation decay or positions of the main peaks in their TL glow curves. This work also summarizes the results of optical study of films, crystals, and epitaxial structures of these garnet compounds using absorption, cathodoluminescence, and photoluminescence. The scintillation and TL properties of the developed materials under α- and β-particles and γ-quanta excitations were studied as well. The most efficient variants of the composite scintillation and TL detectors for monitoring of composition of mixed beams of ionizing radiation were selected based on the results of this complex study.
Composition Engineering of (Lu,Gd,Tb)3(Al,Ga)5O12:Ce Film/Gd3(Al,Ga)5O12:Ce Substrate Scintillators
The paper addresses the development of composite scintillation materials providing simultaneous real-time monitoring of different types of ionizing radiation (α-, β-particles, γ-rays) in mixed fluxes of particles and quanta. The detectors are based on composite heavy oxide scintillators consisting of a thin single-crystalline film and a bulk single-crystal substrate. The film and substrate respond to certain types of ionizing particles, forming together an all-in-one composite scintillator capable of distinguishing the type of radiation through the different time characteristics of the scintillation response. Here, we report the structure, composition, and scintillation properties under different ionizing radiations of (Lu,Gd,Tb)3(Al,Ga)5O12:Ce films deposited using liquid phase epitaxy onto Gd3(Al1−xGax)5O12:Ce (GAGG:Ce) single-crystal substrates. The most promising compositions with the highest light yields and the largest differences in scintillation decay timing under irradiation with α-, β-particles, and γ-rays were selected. Such detectors are promising for environmental security purposes, medical tomography, and other radiation detection applications.
Crystallization and Investigation of the Structural and Optical Properties of Ce3+-Doped Y3−xCaxAl5−ySiyO12 Single Crystalline Film Phosphors
This work is devoted to the crystallization and investigation of the optical properties of single crystalline films (SCFs) of Ce3+-doped Y3−xCaxAl5−ySiyO12 garnet, where the content of Ca2+ and Si4+ cations varied in the x = 0.13–0.52 and y = 0.065–0.5 ranges, respectively. The SCF samples were grown using the liquid phase epitaxy technique onto Y3Al5O12 substrates from the melt solution with equimolar Ca and Si content using PbO-B2O3 flux. However, the Ca and Si concentration in Y3−xCax Al5−ySiyO12:Ce SCFs is not equal: the Ca2+ content was systematically larger than that of Si4+, and the Ca2+ excess is compensated for by the Ce4+ ion formation. The absorption, scintillation, and luminescent properties of Y3−xCaxAl5−ySiyO12:Ce SCFs with different Ca/Si concentrations were investigated and compared with the sample of YAG:Ce SCF. Due to the creation of Ce4+ ions, the as-grown Y3−xCaxAl5−ySiyO12:Ce SCFs show relatively low light yield (LY) under α–particle excitation but a fast scintillation response with a decay time in the ns range. After SCF annealing in the reducing (N2 + H2) atmosphere at T > 1000 °C, the recharging of Ce4+→Ce3+ ions occurs. Furthermore, the samples annealed at 1300 °C SCF possess an LY of about 40% in comparison with the reference YAG:Ce SCF and scintillation decay kinetics much closer to that of the SCF counterpart. Due to Ca2+ and Si4+ alloying, the Ce3+ emission spectra in Y3−xCaxAl5−ySiyO12 SCFs are extended to the red range in comparison with the spectra of YAG:Ce SCF. Such an extension is caused by the Ce3+ multicenter formation at the substitutions of both Y3+ and Ca2+ dodecahedral positions in the hosts of these mixed garnets.
LPE Growth of Composite Thermoluminescent Detectors Based on the Lu3−xGdxAl5O12:Ce Single Crystalline Films and YAG:Ce Crystals
This work is dedicated to the development of new types of composite thermoluminescent (TL) detectors for simultaneous registration of the different components of ionization radiation based on the single crystalline films (SCFs) of Ce3+-doped Lu3−xGdxAl5O12:Ce (x = 0–1.5) garnet and Y3Al5O12:Ce (YAG:Ce) substrates using the liquid phase epitaxy (LPE) growth method. For this purpose, the TL properties of the mentioned epitaxial structures were examined in Risø TL/OSL-DA-20 reader under excitation by α- and β-particles from 242Am and 90Sr-90Y sources. We have shown that the cation engineering of SCF content can result in more significant separation of the TL glow curves of SCFs and substrates under α- and β-particle excitations in comparison with the prototype of such composite detectors based on the Lu3Al5O12:Ce (LuAG:Ce)/YAG:Ce epitaxial structure. Specifically, the difference between the TL glow curves of Lu1.5Gd1.5Al5O12:Ce SCFs and YAG:Ce substrates increases up to 120 K in comparison with a respective value of 80 degrees in the prototype based on the LuAG:Ce/YAG:Ce epitaxial structure. Therefore, the LPE-grown epitaxial structures containing Lu1.5Gd1.5Al5O12:Ce SCFs and Ce3+-doped YAG:Ce substrate can be successfully applied for simultaneous registration of α- and β-particles in mixed fluxes of ionization radiation.
Development of Composite Scintillators Based on the LuAG: Pr Single Crystalline Films and LuAG:Sc Single Crystals
The scintillation properties of novel type of composite scintillator based on Lu3Al5O12:Pr (LuAG:Pr) single crystalline film (SCF) and LuAG:Sc substrate grown by the liquid-phase epitaxy method are considered in this work. The registration of α-particles and γ-quanta in such types of composites occurs by means of separation of the scintillation decay kinetics of SCF and crystal parts, respectively. Namely, under excitation by α-particles of 241Am (5.5 MeV) source and γ-quanta of 137Cs (662 keV) source, the large differences in the respective scintillation decay kinetics and decay time values tα and tγ are observed for the LuAG:Pr SCF/LuAG:Sc SC composite scintillator with various film thicknesses. Furthermore, the best tγ/tα ratio above 4.5 is achieved for such types of epitaxial structure with SCF and substrate thicknesses of 17 μm and about 0.5 mm, respectively. The development types of composite scintillators can be successfully applied for simultaneous registration of α-particles and γ-quanta in the mixed radiation fluxes.
LPE Growth of Single Crystalline Film Scintillators Based on Ce3+ Doped Tb3−xGdxAl5−yGayO12 Mixed Garnets
The growth of single crystalline films (SCFs) with excellent scintillation properties based on the Tb1.5Gd1.5Al5−yGayO12:Ce mixed garnet at y = 2–3.85 by Liquid Phase Epitaxy (LPE) method onto Gd3Al2.5Ga2.5O12 (GAGG) substrates from BaO based flux is reported in this work. We have found that the best scintillation properties are shown by Tb1.5Gd1.5Al3Ga2O12:Ce SCFs. These SCFs possess the highest light yield (LY) ever obtained in our group for LPE grown garnet SCF scintillators exceeding by at least 10% the LY of previously reported Lu1.5Gd1.5Al2.75Ga2.25O12:Ce and Gd3Al2–2.75 Ga3–2.25O12:Ce SCF scintillators, grown from BaO based flux. Under α-particles excitation, the Tb1.5Gd1.5 Al3Ga2O12:Ce SCF show LY comparable with that of high-quality Gd3Al2.5Ga2.5O12:Ce single crystal (SC) scintillator with the LY above 10,000 photons/MeV but faster (at least by 2 times) scintillation decay times t1/e and t1/20 of 230 and 730 ns, respectively. The LY of Tb1.5Gd1.5Al2.5Ga2.5O12:Ce SCFs, grown from PbO flux, is comparable with the LY of their counterparts grown from BaO flux, but these SCFs possess slightly slower scintillation response with decay times t1/e and t1/20 of 330 and 990 ns, respectively. Taking into account that the SCFs of the Tb1.5Gd1.5Al3–2.25Ga2–2.75O12:Ce garnet can also be grown onto Ce3+ doped GAGG substrates, the LPE method can also be used for the creation of the hybrid film-substrate scintillators for simultaneous registration of the different components of ionization fluxes.
Thermoluminescent Properties of Cerium-Doped Lu2SO5 and Y2SiO5 Single Crystalline Films Scintillators Grown from PbO-B2O3 and Bi2O3 Fluxes
In this work we show the influence of material preparation technology on the thermoluminescent properties of single crystalline films (SCFs) of Ce3+-doped Lu2SiO5 (LSO) and Y2SiO5 (YSO) orthosilicates. LSO:Ce and YSO:Ce SCFs were grown by the liquid phase epitaxy method from two different melt-solutions based on PbO-B2O3 and Bi2O3 fluxes. Absorption, cathodoluminescence, and thermoluminescent properties of LSO:Ce and YSO:Ce SCFs grown from the two previously mentioned types of fluxes were compared, and results of spectrally resolved thermoluminescence measurements and thermoluminescent glow curves of SCFs recorded in different spectral ranges were presented. We have found that the observed differences in thermoluminescent properties of the SCFs under study can be caused by the domination of Ce4+ and Pb2+ emission centers in LSO:Ce and YSO:Ce SCFs grown using PbO-B2O3 flux, and Ce3+ and Bi3+ emission centers in the SCFs grown from Bi2O3 flux.
Optical and Photoconversion Properties of Ce 3+ -Doped (Ca,Y) 3 (Mg,Sc) 2 Si 3 O 12 Films Grown via LPE Method onto YAG and YAG:Ce Substrates
This work presents a comprehensive study of the structural, luminescent, and photoconversion properties of epitaxial composite phosphor converters based on single crystalline films of Ce -activated Ca Y Mg Sc Si O :Ce (x = 0-0.25) (CYMSSG:Ce) garnet, grown using the liquid phase epitaxy (LPE) method on single-crystal Y Al O (YAG) and YAG:Ce substrates. The main goal of this study is to elucidate the structure-composition-property relationships that influence the photoluminescence and photoconversion efficiency of these film-substrate composite converters, aiming to optimize their performance in high-power white light-emitting diode (WLED) applications. Systematic variation in the Y /Sc /Mg cationic ratios within the garnet structure, combined with the controlled tuning of film thickness (ranging from 19 to 67 µm for CYMSSG:Ce/YAG and 10-22 µm for CYMSSG:Ce/YAG:Ce structures), enabled the precise modulation of their photoconversion properties. Prototypes of phosphor-converted WLEDs (pc-WLEDs) were developed based on these epitaxial structures to assess their performance and investigate how the content and thickness of SCFs affect the colorimetric properties of SCFs and composite converters. Clear trends were observed in the Ce emission peak position, intensity, and color rendering, induced by the Y /Sc /Mg cation substitution in the film converter, film thickness, and activator concentrations in the substrate and film. These results may be useful for the design of epitaxial phosphor converters with tunable emission spectra based on the epitaxially grown structures of garnet compounds.
Three-Layered Composite Scintillator Based on the Epitaxial Structures of YAG and LuAG Garnets Doped with Ce 3+ and Sc 3+ Impurities
In this study, we propose novel three-layer composite scintillators designed for the simultaneous detection of different ionizing radiation components. These scintillators are based on epitaxial structures of LuAG and YAG garnets, doped with Ce and Sc ions. Samples of these composite scintillators, containing YAG:Ce and LuAG:Ce single crystalline films with different thicknesses and LuAG:Sc single crystal substrates, were grown using the liquid phase epitaxy method from melt solutions based on PbO-B O fluxes. The scintillation properties of the proposed composites, YAG:Ce film/LuAG:Sc film/LuAG:Ce crystal and YAG:Ce film/LuAG:Ce film/LuAG:Sc crystal, were investigated under excitation by radiation with α-particles from a Pu source, β-particles from Sr sources and γ-rays from a Cs source. Considering the properties of the mentioned composite scintillators, special attention was paid to the ability of simultaneous separation of the different components of mixed ionizing radiation containing the mentioned particles and quanta using scintillation decay kinetics. The differences in scintillation decay curves under α- and β-particle and γ-ray excitations were characterized using figure of merit (FOM) values at various scintillation decay intensity levels (1/e, 0.1, 0.05, 0.01).