Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
250 result(s) for "Volk, Holger"
Sort by:
Cognitive dysfunction in naturally occurring canine idiopathic epilepsy
Globally, epilepsy is a common serious brain disorder. In addition to seizure activity, epilepsy is associated with cognitive impairments including static cognitive impairments present at onset, progressive seizure-induced impairments and co-morbid dementia. Epilepsy occurs naturally in domestic dogs but its impact on canine cognition has yet to be studied, despite canine cognitive dysfunction (CCD) recognised as a spontaneous model of dementia. Here we use data from a psychometrically validated tool, the canine cognitive dysfunction rating (CCDR) scale, to compare cognitive dysfunction in dogs diagnosed with idiopathic epilepsy (IE) with controls while accounting for age. An online cross-sectional study resulted in a sample of 4051 dogs, of which n = 286 had been diagnosed with IE. Four factors were significantly associated with a diagnosis of CCD (above the diagnostic cut-off of CCDR ≥50): (i) epilepsy diagnosis: dogs with epilepsy were at higher risk; (ii) age: older dogs were at higher risk; (iii) weight: lighter dogs (kg) were at higher risk; (iv) training history: dogs with more exposure to training activities were at lower risk. Impairments in memory were most common in dogs with IE, but progression of impairments was not observed compared to controls. A significant interaction between epilepsy and age was identified, with IE dogs exhibiting a higher risk of CCD at a young age, while control dogs followed the expected pattern of low-risk throughout middle age, with risk increasing exponentially in geriatric years. Within the IE sub-population, dogs with a history of cluster seizures and high seizure frequency had higher CCDR scores. The age of onset, nature and progression of cognitive impairment in the current IE dogs appear divergent from those classically seen in CCD. Longitudinal monitoring of cognitive function from seizure onset is required to further characterise these impairments.
ACVIM Consensus Statement on the management of status epilepticus and cluster seizures in dogs and cats
Background Seizure emergencies (ie, status epilepticus [SE] and cluster seizures [CS]), are common challenging disorders with complex pathophysiology, rapidly progressive drug‐resistant and self‐sustaining character, and high morbidity and mortality. Current treatment approaches are characterized by considerable variations, but official guidelines are lacking. Objectives To establish evidence‐based guidelines and an agreement among board‐certified specialists for the appropriate management of SE and CS in dogs and cats. Animals None. Materials and Methods A panel of 5 specialists was formed to assess and summarize evidence in the peer‐reviewed literature with the aim to establish consensus clinical recommendations. Evidence from veterinary pharmacokinetic studies, basic research, and human medicine also was used to support the panel's recommendations, especially for the interventions where veterinary clinical evidence was lacking. Results The majority of the evidence was on the first‐line management (ie, benzodiazepines and their various administration routes) in both species. Overall, there was less evidence available on the management of emergency seizure disorders in cats in contrast to dogs. Most recommendations made by the panel were supported by a combination of a moderate level of veterinary clinical evidence and pharmacokinetic data as well as studies in humans and basic research studies. Conclusions and Clinical Relevance Successful management of seizure emergencies should include an early, rapid, and stage‐based treatment approach consisting of interventions with moderate to preferably high ACVIM recommendations; management of complications and underlying causes related to seizure emergencies should accompany antiseizure medications.
What can we learn from the hair of the dog? Complex effects of endogenous and exogenous stressors on canine hair cortisol
Hair is an emerging biological matrix in which to measure chronic HPA axis activity, offering a longer term view into an animal's life. We explored effects of exogenous (e.g. lifestyle, medications, social environment) and endogenous (e.g. disease, behaviour) stressors on hair cortisol concentration (HCC) in a population of Border Collies (BCs). Owners of BCs were recruited and reported their dog's lifestyle, clinical history, anxiety-related behaviour, and collected a white hair sample from their dog's dorsal neck region. HCC was determined using established methods with a commercial cortisol assay kit. Samples from 135 BCs were analysed, with 91 healthy controls and 44 diagnosed with epilepsy as a model disease. Factors associated with higher HCC included psychosocial stressors (living with three or more other dogs) and lifestyle (engaging in competitive flyball); while factors associated with lower HCC included anxiety (stranger-directed and non-social), health (epilepsy diagnosis, with number of seizures to date negatively correlated with HCC) and medication (certain anti-epileptic drugs were associated with elevated or reduced HCC). These novel results highlight the potential of chronic stress with frequent or persisting HPA-axis hyperactivity leading to a state of hypocortisolism, and the need to consider stressor recency and recurrence when interpreting HCC data.
Comparative evaluation of radiographic and computed tomographic findings in dogs with bilateral medial coronoid disease (MCD) presenting with unilateral forelimb lameness
The purpose of this study was to compare the radiographic and computed tomographic (CT) findings of dogs with diagnosed bilateral medial coronoid disease, which showed clinically only unilateral lameness of the forelimbs. Medical records, including radiographs and CT images of dogs with diagnosed bilateral MCD showing only a unilateral forelimb lameness clinically were reviewed retrospectively. Depending on the gait of each dog we established two groups to investigate their radiographs and CT data comparatively. Group I: affected non-lame limb. Group II: affected lame limb. Several evaluation systems were used to assess which factors are important for clinical decision making and a patient tailored therapeutic plan. Data from 84 affected elbow joints (42 dogs) diagnosed with MCD by computed tomography were included. Both the radiological and the CT analysis showed that there are significant differences between Groups I and II. Group I had a lower modified International Elbow Working Group Score (IEWG), the values of the Trochlear notch sclerosis were only slightly deviated, and this group showed less often a dislocation of the fragment compared to group II. Furthermore, the size of the fragment (both the median and the mean value) of the forelimbs from group II was almost twice as big as the one from group I. The following sizes of the fragments were calculated (group I versus (vs.) group II)-median: 0.09 cm2 vs. 0.16 cm2, mean value: 0.112 cm2 vs. 0.202 cm2. It could be shown that a larger fragment is more likely to dislocate than a smaller one. This study provides some evidence towards a better understanding of which diagnostic parameters and findings might be important in clinical decision making. Nevertheless, a \"decision tree\" for the correct therapy of MCD could not be determined in this study.
Comparative evaluation of radiographic and computed tomographic findings in dogs with bilateral medial coronoid disease (MCD) presenting with unilateral forelimb lameness
ObjectivesThe purpose of this study was to compare the radiographic and computed tomographic (CT) findings of dogs with diagnosed bilateral medial coronoid disease, which showed clinically only unilateral lameness of the forelimbs.Materials and methodsMedical records, including radiographs and CT images of dogs with diagnosed bilateral MCD showing only a unilateral forelimb lameness clinically were reviewed retrospectively. Depending on the gait of each dog we established two groups to investigate their radiographs and CT data comparatively. Group I: affected non-lame limb. Group II: affected lame limb. Several evaluation systems were used to assess which factors are important for clinical decision making and a patient tailored therapeutic plan.ResultsData from 84 affected elbow joints (42 dogs) diagnosed with MCD by computed tomography were included. Both the radiological and the CT analysis showed that there are significant differences between Groups I and II. Group I had a lower modified International Elbow Working Group Score (IEWG), the values of the Trochlear notch sclerosis were only slightly deviated, and this group showed less often a dislocation of the fragment compared to group II. Furthermore, the size of the fragment (both the median and the mean value) of the forelimbs from group II was almost twice as big as the one from group I. The following sizes of the fragments were calculated (group I versus (vs.) group II)-median: 0.09 cm2 vs. 0.16 cm2, mean value: 0.112 cm2 vs. 0.202 cm2. It could be shown that a larger fragment is more likely to dislocate than a smaller one.Clinical significanceThis study provides some evidence towards a better understanding of which diagnostic parameters and findings might be important in clinical decision making. Nevertheless, a \"decision tree\" for the correct therapy of MCD could not be determined in this study.
International veterinary canine dyskinesia task force ECVN consensus statement: Terminology and classification
Movement disorders are a heterogeneous group of clinical syndromes in humans and animals characterized by involuntary movements without changes in consciousness. Canine movement disorders broadly include tremors, peripheral nerve hyperexcitability disorders, paroxysmal dyskinesia, and dystonia. Of these, canine paroxysmal dyskinesias remain one of the more difficult to identify and characterize in dogs. Canine paroxysmal dyskinesias include an array of movement disorders in which there is a recurrent episode of abnormal, involuntary, movement. In this consensus statement, we recommend standard terminology for describing the various movement disorders with an emphasis on paroxysmal dyskinesia, as well as a preliminary classification and clinical approach to reporting cases. In the clinical approach to movement disorders, we recommend categorizing movements into hyperkinetic vs hypokinetic, paroxysmal vs persistent, exercise‐induced vs not related to exercise, using a detailed description of movements using the recommended terminology presented here, differentiating movement disorders vs other differential diagnoses, and then finally, determining whether the paroxysmal dyskinesia is due to either inherited or acquired etiologies. This consensus statement represents a starting point for consistent reporting of clinical descriptions and terminology associated with canine movement disorders, with additional focus on paroxysmal dyskinesia. With consistent reporting and identification of additional genetic mutations responsible for these disorders, our understanding of the phenotype, genotype, and pathophysiology will continue to develop and inform further modification of these recommendations.
Explainable automated pain recognition in cats
Manual tools for pain assessment from facial expressions have been suggested and validated for several animal species. However, facial expression analysis performed by humans is prone to subjectivity and bias, and in many cases also requires special expertise and training. This has led to an increasing body of work on automated pain recognition, which has been addressed for several species, including cats. Even for experts, cats are a notoriously challenging species for pain assessment. A previous study compared two approaches to automated ‘pain’/‘no pain’ classification from cat facial images: a deep learning approach, and an approach based on manually annotated geometric landmarks, reaching comparable accuracy results. However, the study included a very homogeneous dataset of cats and thus further research to study generalizability of pain recognition to more realistic settings is required. This study addresses the question of whether AI models can classify ‘pain’/‘no pain’ in cats in a more realistic (multi-breed, multi-sex) setting using a more heterogeneous and thus potentially ‘noisy’ dataset of 84 client-owned cats. Cats were a convenience sample presented to the Department of Small Animal Medicine and Surgery of the University of Veterinary Medicine Hannover and included individuals of different breeds, ages, sex, and with varying medical conditions/medical histories. Cats were scored by veterinary experts using the Glasgow composite measure pain scale in combination with the well-documented and comprehensive clinical history of those patients; the scoring was then used for training AI models using two different approaches. We show that in this context the landmark-based approach performs better, reaching accuracy above 77% in pain detection as opposed to only above 65% reached by the deep learning approach. Furthermore, we investigated the explainability of such machine recognition in terms of identifying facial features that are important for the machine, revealing that the region of nose and mouth seems more important for machine pain classification, while the region of ears is less important, with these findings being consistent across the models and techniques studied here.
Automated brain extraction for canine magnetic resonance images
Background Brain extraction is a common preprocessing step when working with intracranial medical imaging data. While several tools exist to automate the preprocessing of magnetic resonance imaging (MRI) of the human brain, none are available for canine MRIs. We present a pipeline mapping separate 2D scans to a 3D image, and a neural network for canine brain extraction. Methodology The training dataset consisted of T1-weighted and contrast-enhanced images from 68 dogs of different breeds, all cranial conformations (mesaticephalic, dolichocephalic, brachycephalic), with several pathological conditions, taken at three institutions. Testing was performed on a similarly diverse group of 10 dogs with images from a 4th institution. Results The model achieved excellent results in terms of Dice ( ) and Jaccard ( ) metrics and generalised well across different MRI scanners, the three aforementioned skull types, and variations in head size and breed. The pipeline was effective for a combination of one to three acquisition planes (i.e., transversal, dorsal, and sagittal). Aside from the T1 weighted imaging training datasets, the model also performed well on other MRI sequences with Jaccardian indices and median Dice scores ranging from 0.86 to 0.89 and 0.92 to 0.94, respectively. Conclusions Our approach was robust for automated brain extraction. Variations in canine anatomy and performance degradation in multi-scanner data can largely be mitigated through normalisation and augmentation techniques. Brain extraction, as a preprocessing step, can improve the accuracy of an algorithm for abnormality classification in MRI image slices.
Clinical Risk Factors Associated with Anti-Epileptic Drug Responsiveness in Canine Epilepsy
The nature and occurrence of remission, and conversely, pharmacoresistance following epilepsy treatment is still not fully understood in human or veterinary medicine. As such, predicting which patients will have good or poor treatment outcomes is imprecise, impeding patient management. In the present study, we use a naturally occurring animal model of pharmacoresistant epilepsy to investigate clinical risk factors associated with treatment outcome. Dogs with idiopathic epilepsy, for which no underlying cause was identified, were treated at a canine epilepsy clinic and monitored following discharge from a small animal referral hospital. Clinical data was gained via standardised owner questionnaires and longitudinal follow up data was gained via telephone interview with the dogs' owners. At follow up, 14% of treated dogs were in seizure-free remission. Dogs that did not achieve remission were more likely to be male, and to have previously experienced cluster seizures. Seizure frequency or the total number of seizures prior to treatment were not significant predictors of pharmacoresistance, demonstrating that seizure density, that is, the temporal pattern of seizure activity, is a more influential predictor of pharmacoresistance. These results are in line with clinical studies of human epilepsy, and experimental rodent models of epilepsy, that patients experiencing episodes of high seizure density (cluster seizures), not just a high seizure frequency pre-treatment, are at an increased risk of drug-refractoriness. These data provide further evidence that the dog could be a useful naturally occurring epilepsy model in the study of pharmacoresistant epilepsy.
Prevention of Noise-Induced Hearing Loss In Vivo: Continuous Application of Insulin-like Growth Factor 1 and Its Effect on Inner Ear Synapses, Auditory Function and Perilymph Proteins
As noise-induced hearing loss (NIHL) is a leading cause of occupational diseases, there is an urgent need for the development of preventive and therapeutic interventions. To avoid user-compliance-based problems occurring with conventional protection devices, the pharmacological prevention is currently in the focus of hearing research. Noise exposure leads to an increase in reactive oxygen species (ROS) in the cochlea. This way antioxidant agents are a promising option for pharmacological interventions. Previous animal studies reported preventive as well as therapeutic effects of Insulin-like growth factor 1 (IGF-1) in the context of NIHL. Unfortunately, in patients the time point of the noise trauma cannot always be predicted, and additive effects may occur. Therefore, continuous prevention seems to be beneficial. The present study aimed to investigate the preventive potential of continuous administration of low concentrations of IGF-1 to the inner ear in an animal model of NIHL. Guinea pigs were unilaterally implanted with an osmotic minipump. One week after surgery they received noise trauma, inducing a temporary threshold shift. Continuous IGF-1 delivery lasted for seven more days. It did not lead to significantly improved hearing thresholds compared to control animals. Quite the contrary, there is a hint for a higher noise susceptibility. Nevertheless, changes in the perilymph proteome indicate a reduced damage and better repair mechanisms through the IGF-1 treatment. Thus, future studies should investigate delivery methods enabling continuous prevention but reducing the risk of an overdosage.