Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
24
result(s) for
"Voshol, Hans"
Sort by:
Structural basis of indisulam-mediated RBM39 recruitment to DCAF15 E3 ligase complex
by
Carte, Nathalie
,
Frank, Andreas O.
,
Srinivas, Honnappa
in
631/1647/2258/1266
,
631/535
,
631/92
2020
The anticancer agent indisulam inhibits cell proliferation by causing degradation of RBM39, an essential mRNA splicing factor. Indisulam promotes an interaction between RBM39 and the DCAF15 E3 ligase substrate receptor, leading to RBM39 ubiquitination and proteasome-mediated degradation. To delineate the precise mechanism by which indisulam mediates the DCAF15–RBM39 interaction, we solved the DCAF15–DDB1–DDA1–indisulam–RBM39(RRM2) complex structure to a resolution of 2.3 Å. DCAF15 has a distinct topology that embraces the RBM39(RRM2) domain largely via non-polar interactions, and indisulam binds between DCAF15 and RBM39(RRM2), coordinating additional interactions between the two proteins. Studies with RBM39 point mutants and indisulam analogs validated the structural model and defined the RBM39 α-helical degron motif. The degron is found only in RBM23 and RBM39, and only these proteins were detectably downregulated in indisulam-treated HCT116 cells. This work further explains how indisulam induces RBM39 degradation and defines the challenge of harnessing DCAF15 to degrade additional targets.
The crystal and cryo-electron microscopy structure analysis of the DCAF15–DDB1–DDA1–indisulam–RBM39 complex revealed the detailed mechanism of action of indisulam-induced RBM39 degradation and defined an α-helical degron motif in RBM39.
Journal Article
The role of lysine palmitoylation/myristoylation in the function of the TEAD transcription factors
2022
The TEAD transcription factors are the most downstream elements of the Hippo pathway. Their transcriptional activity is modulated by different regulator proteins and by the palmitoylation/myristoylation of a specific cysteine residue. In this report, we show that a conserved lysine present in these transcription factors can also be acylated, probably following the intramolecular transfer of the acyl moiety from the cysteine. Using Scalloped (Sd), the
Drosophila
homolog of human TEAD, as a model, we designed a mutant protein (Glu352Gln
Sd
) that is predominantly acylated on the lysine (Lys350
Sd
). This protein binds in vitro to the three Sd regulators—Yki, Vg and Tgi—with a similar affinity as the wild type Sd, but it has a significantly higher thermal stability than Sd acylated on the cysteine. This mutant was also introduced in the endogenous locus of the
sd
gene in
Drosophila
using CRISPR/Cas9. Homozygous mutants reach adulthood, do not present obvious morphological defects and the mutant protein has both the same level of expression and localization as wild type Sd. This reveals that this mutant protein is both functional and able to control cell growth in a similar fashion as wild type Sd. Therefore, enhancing the lysine acylation of Sd has no detrimental effect on the Hippo pathway. However, we did observe a slight but significant increase of wing size in flies homozygous for the mutant protein suggesting that a higher acylation of the lysine affects the activity of the Hippo pathway. Altogether, our findings indicate that TEAD/Sd can be acylated either on a cysteine or on a lysine, and suggest that these two different forms may have similar properties in cells.
Journal Article
Triggering the succinate receptor GPR91 on dendritic cells enhances immunity
by
Lametschwandtner, Günther
,
Kund, Julia
,
Voshol, Hans
in
Animals
,
Biomedical and Life Sciences
,
Biomedicine
2008
Succinate is a Krebs cycle intermediate. Carballido and colleagues show that succinate released by necrotic cells also functions as an 'alarmin' by activating dendritic cells that express the succinate receptor GPR91.
Succinate acts as an extracellular mediator signaling through the G protein–coupled receptor GPR91. Here we show that dendritic cells had high expression of GPR91. In these cells, succinate triggered intracellular calcium mobilization, induced migratory responses and acted in synergy with Toll-like receptor ligands for the production of proinflammatory cytokines. Succinate also enhanced antigen-specific activation of human and mouse helper T cells. GPR91-deficient mice had less migration of Langerhans cells to draining lymph nodes and impaired tetanus toxoid–specific recall T cell responses. Furthermore, GPR91-deficient allografts elicited weaker transplant rejection than did the corresponding grafts from wild-type mice. Our results suggest that the succinate receptor GPR91 is involved in sensing immunological danger, which establishes a link between immunity and a metabolite of cellular respiration.
Journal Article
Author Correction: Structural basis of indisulam-mediated RBM39 recruitment to DCAF15 E3 ligase complex
by
Carte, Nathalie
,
Frank, Andreas O.
,
Srinivas, Honnappa
in
631/1647/2258/1266
,
631/535
,
631/92
2020
An amendment to this paper has been published and can be accessed via a link at the top of the paper.An amendment to this paper has been published and can be accessed via a link at the top of the paper.
Journal Article
Scalable Production in Human Cells and Biochemical Characterization of Full-Length Normal and Mutant Huntingtin
2015
Huntingtin (Htt) is a 350 kD intracellular protein, ubiquitously expressed and mainly localized in the cytoplasm. Huntington's disease (HD) is caused by a CAG triplet amplification in exon 1 of the corresponding gene resulting in a polyglutamine (polyQ) expansion at the N-terminus of Htt. Production of full-length Htt has been difficult in the past and so far a scalable system or process has not been established for recombinant production of Htt in human cells. The ability to produce Htt in milligram quantities would be a prerequisite for many biochemical and biophysical studies aiming in a better understanding of Htt function under physiological conditions and in case of mutation and disease. For scalable production of full-length normal (17Q) and mutant (46Q and 128Q) Htt we have established two different systems, the first based on doxycycline-inducible Htt expression in stable cell lines, the second on \"gutless\" adenovirus mediated gene transfer. Purified material has then been used for biochemical characterization of full-length Htt. Posttranslational modifications (PTMs) were determined and several new phosphorylation sites were identified. Nearly all PTMs in full-length Htt localized to areas outside of predicted alpha-solenoid protein regions. In all detected N-terminal peptides methionine as the first amino acid was missing and the second, alanine, was found to be acetylated. Differences in secondary structure between normal and mutant Htt, a helix-rich protein, were not observed in our study. Purified Htt tends to form dimers and higher order oligomers, thus resembling the situation observed with N-terminal fragments, although the mechanism of oligomer formation may be different.
Journal Article
The Tyrosine Phosphatase PTPN14 Is a Negative Regulator of YAP Activity
by
Michaloglou, Chrysiis
,
Christofori, Gerhard
,
Voshol, Hans
in
Amino acids
,
Apoptosis
,
Biochemistry
2013
The Hippo (Hpo) pathway is a novel signaling pathway that controls organ size in Drosophila and mammals and is deregulated in a variety of human cancers. It consists of a set of kinases that, through a number of phosphorylation events, inactivate YAP, a transcriptional co-activator that controls cellular proliferation and apoptosis. We have identified PTPN14 as a YAP-binding protein that negatively regulates YAP activity by controlling its localization. Mechanistically, we find that the interaction of ectopic YAP with PTPN14 can be mediated by the respective WW and PPxY motifs. However, the PTPN14 PPxY motif and phosphatase activity appear to be dispensable for the negative regulation of endogenous YAP, likely suggesting more complex mechanisms of interaction and modulation. Finally, we demonstrate that PTPN14 downregulation can phenocopy YAP activation in mammary epithelial cells and synergize with YAP to induce oncogenic transformation.
Journal Article
Neuroproteomics: Expression Profiling of the Brain's Proteomes in Health and Disease
by
Kim, Sandra I.
,
Hastings, Terri G.
,
Voshol, Hans
in
Alzheimer Disease - genetics
,
Animals
,
Brain Diseases - genetics
2004
The term \"proteome\" describes the protein complement of a genome. Proteomes of cells are dynamic and are directly affected by environmental factors, such as stress and/or drug treatment, or as a result of aging and disease. One of the distinct advantages of proteomic analysis, not attainable with RNA expression data, is the ability to fractionate the cell's proteins into various subpopulations. In neuroscience, \"neuromics\" (proteomics in the central nervous system) is in its infancy, with a paucity of studies in the context of the brain. One of the objectives of this review is to illustrate the potential of neuromics to profile differences in the distribution of thousands of proteins as a function of disease markers. We have previously used this approach to determine the effects of varied postmortem interval in examining human brain tissue and to identify biomarkers. Here we review proteomic studies of schizophrenia, Alzheimer's disease, and Parkinson's disease. Experimental results regarding Parkinson's disease are presented to illustrate the potential of neuromics to identify pathways of pathogenesis and novel therapeutic targets.
Journal Article
Discovery of WRN inhibitor HRO761 with synthetic lethality in MSI cancers
2024
The Werner syndrome RecQ helicase WRN was identified as a synthetic lethal target in cancer cells with microsatellite instability (MSI) by several genetic screens
1
–
6
. Despite advances in treatment with immune checkpoint inhibitors
7
–
10
, there is an unmet need in the treatment of MSI cancers
11
–
14
. Here we report the structural, biochemical, cellular and pharmacological characterization of the clinical-stage WRN helicase inhibitor HRO761, which was identified through an innovative hit-finding and lead-optimization strategy. HRO761 is a potent, selective, allosteric WRN inhibitor that binds at the interface of the D1 and D2 helicase domains, locking WRN in an inactive conformation. Pharmacological inhibition by HRO761 recapitulated the phenotype observed by WRN genetic suppression, leading to DNA damage and inhibition of tumour cell growth selectively in MSI cells in a p53-independent manner. Moreover, HRO761 led to WRN degradation in MSI cells but not in microsatellite-stable cells. Oral treatment with HRO761 resulted in dose-dependent in vivo DNA damage induction and tumour growth inhibition in MSI cell- and patient-derived xenograft models. These findings represent preclinical pharmacological validation of WRN as a therapeutic target in MSI cancers. A clinical trial with HRO761 (NCT05838768) is ongoing to assess the safety, tolerability and preliminary anti-tumour activity in patients with MSI colorectal cancer and other MSI solid tumours.
HRO761 is a potent, selective, allosteric WRN inhibitor that binds at the interface of the D1 and D2 helicase domains, locking WRN in an inactive conformation.
Journal Article
Activation of IGF1R/p110β/AKT/mTOR confers resistance to α-specific PI3K inhibition
by
Fritsch, Christine
,
Cornille, Karen
,
Voshol, Hans
in
Animals
,
Biomedical and Life Sciences
,
Biomedicine
2016
Background
The PI3K pathway is hyperactivated in many cancers, including 70 % of breast cancers. Pan- and isoform-specific inhibitors of the PI3K pathway are currently being evaluated in clinical trials. However, the clinical responses to PI3K inhibitors when used as single agents are not as efficient as expected.
Methods
In order to anticipate potential molecular mechanisms of resistance to the p110α isoform-selective inhibitor BYL719, we developed resistant breast cancer cell lines, assessed the concomitant changes in cellular signaling pathways using unbiased phosphotyrosine proteomics and characterized the mechanism of resistance using pharmacological inhibitors.
Results
We found an increase in IGF1R, IRS1/IRS2 and p85 phosphorylation in the resistant lines. Co-immunoprecipitation experiments identified an IGF1R/IRS/p85/p110β complex that causes the activation of AKT/mTOR/S6K and stifles the effects of BYL719. Pharmacological inhibition of members of this complex reduced mTOR/S6K activation and restored sensitivity to BYL719.
Conclusion
Our study demonstrates that the IGF1R/p110β/AKT/mTOR axis confers resistance to BYL719 in
PIK3CA
mutant breast cancers. This provides a rationale for the combined targeting of p110α with IGF1R or p110β in patients with breast tumors harboring
PIK3CA
mutations.
Journal Article
The Hippo kinases LATS1 and 2 control human breast cell fate via crosstalk with ERα
by
Scheel, Christina H.
,
Voshol, Hans
,
Vissieres, Alexandra
in
631/532/2118/2436
,
692/699/67/1347
,
Adaptor Proteins, Signal Transducing - agonists
2017
Ablation of the large tumour suppressor kinases 1 and 2 promotes a luminal breast cell phenotype through stabilization of oestrogen receptor-α, thereby changing human breast cell fate.
Hippo kinases and human breast cell fate
To investigate the development of human breast cancer, Mohamed Bentires-Alj and colleagues analyse which type of human breast cells give rise to cancer, and look at how tumour regulators affect the fate of both luminal epithelial and basal myoepithelial progenitors and differentiated cells. They carried out an image-based screen looking for the effects of silencing tumour suppressors. They find that the absence of members of the Hippo signalling pathways stabilizes oestrogen receptor-α signalling components to promote a luminal phenotype and increase the number of progenitors.
Cell fate perturbations underlie many human diseases, including breast cancer
1
,
2
. Unfortunately, the mechanisms by which breast cell fate are regulated are largely unknown. The mammary gland epithelium consists of differentiated luminal epithelial and basal myoepithelial cells, as well as undifferentiated stem cells and more restricted progenitors
3
,
4
. Breast cancer originates from this epithelium, but the molecular mechanisms that underlie breast epithelial hierarchy remain ill-defined. Here, we use a high-content confocal image-based short hairpin RNA screen to identify tumour suppressors that regulate breast cell fate in primary human breast epithelial cells. We show that ablation of the large tumour suppressor kinases (LATS) 1 and 2 (refs
5
,
6
), which are part of the Hippo pathway, promotes the luminal phenotype and increases the number of bipotent and luminal progenitors, the proposed cells-of-origin of most human breast cancers. Mechanistically, we have identified a direct interaction between Hippo and oestrogen receptor-α (ERα) signalling. In the presence of LATS, ERα was targeted for ubiquitination and Ddb1–cullin4-associated-factor 1 (DCAF1)-dependent proteasomal degradation. Absence of LATS stabilized ERα and the Hippo effectors YAP and TAZ (hereafter YAP/TAZ), which together control breast cell fate through intrinsic and paracrine mechanisms. Our findings reveal a non-canonical (that is, YAP/TAZ-independent) effect of LATS in the regulation of human breast cell fate.
Journal Article