Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
50
result(s) for
"Voss, Stephan D"
Sort by:
SPECT/CT, PET/CT and PET/MRI: oncologic and infectious applications and protocol considerations
2023
Functional imaging is playing an increasingly important role in pediatric radiology. Hybrid imaging techniques utilizing PET/CT (positron emission tomography/computed tomography), PET/MRI (positron emission tomography/magnetic resonance imaging), or SPECT/CT (single photon emission computed tomography/computed tomography) are now available in nearly every clinical practice. There are an increasing number of indications for the use of functional imaging, including oncologic and infectious indications, and it is essential to select and design the hybrid imaging protocol in order to optimize both the functional and anatomic components of the examination. Optimizing the protocol includes strategies for dose reduction, judicious use of contrast media and diagnostic quality imaging as appropriate, and for the greatest reduction in exposure to ionizing radiation, utilizing PET/MRI, whenever available. This review will provide an overview of hybrid imaging protocol considerations with a focus on oncologic and infectious indications.
Journal Article
Safety and activity of crizotinib for paediatric patients with refractory solid tumours or anaplastic large-cell lymphoma: a Children's Oncology Group phase 1 consortium study
by
Lim, Megan S
,
Laliberte, Julie
,
Adamson, Peter C
in
Adolescent
,
Age Factors
,
Antineoplastic Agents - administration & dosage
2013
Various human cancers have ALK gene translocations, amplifications, or oncogenic mutations, such as anaplastic large-cell lymphoma, inflammatory myofibroblastic tumours, non-small-cell lung cancer (NSCLC), and neuroblastoma. Therefore, ALK inhibition could be a useful therapeutic strategy in children. We aimed to determine the safety, recommended phase 2 dose, and antitumour activity of crizotinib in children with refractory solid tumours and anaplastic large-cell lymphoma.
In this open-label, phase 1 dose-escalation trial, patients older than 12 months and younger than 22 years with measurable or evaluable solid or CNS tumours, or anaplastic large-cell lymphoma, refractory to therapy and for whom there was no known curative treatment were eligible. Crizotinib was given twice daily without interruption. Six dose levels (100, 130, 165, 215, 280, 365 mg/m2 per dose) were assessed in the dose-finding phase of the study (part A1), which is now completed. The primary endpoint was to estimate the maximum tolerated dose, to define the toxic effects of crizotinib, and to characterise the pharmacokinetics of crizotinib in children with refractory cancer. Additionally, patients with confirmed ALK translocations, mutations, or amplification (part A2 of the study) or neuroblastoma (part A3) could enrol at one dose level lower than was currently given in part A1. We assessed ALK genomic status in tumour tissue and used quantitative RT-PCR to measure NPM-ALK fusion transcript in bone marrow and blood samples of patients with anaplastic large-cell lymphoma. All patients who received at least one dose of crizotinib were evaluable for response; patients completing at least one cycle of therapy or experiencing dose limiting toxicity before that were considered fully evaluable for toxicity. This study is registered with ClinicalTrials.gov, NCT00939770.
79 patients were enrolled in the study from Oct 2, 2009, to May 31, 2012. The median age was 10·1 years (range 1·1–21·4); 43 patients were included in the dose escalation phase (A1), 25 patients in part A2, and 11 patients in part A3. Crizotinib was well tolerated with a recommended phase 2 dose of 280 mg/m2 twice daily. Grade 4 adverse events in cycle 1 were neutropenia (two) and liver enzyme elevation (one). Grade 3 adverse events that occurred in more than one patient in cycle 1 were lymphopenia (two), and neutropenia (eight). The mean steady state peak concentration of crizotinib was 630 ng/mL and the time to reach this peak was 4 h (range 1–6). Objective tumour responses were documented in 14 of 79 patients (nine complete responses, five partial responses); and the anti-tumour activity was enriched in patients with known activating ALK aberrations (eight of nine with anaplastic large-cell lymphoma, one of 11 with neuroblastoma, three of seven with inflammatory myofibroblastic tumour, and one of two with NSCLC).
The findings suggest that a targeted inhibitor of ALK has antitumour activity in childhood malignancies harbouring ALK translocations, particularly anaplastic large-cell lymphoma and inflammatory myofibroblastic tumours, and that further investigation in the subset of neuroblastoma harbouring known ALK oncogenic mutations is warranted.
Pfizer and National Cancer Institute grant to the Children's Oncology Group.
Journal Article
Ionizing radiation from computed tomography versus anesthesia for magnetic resonance imaging in infants and children: patient safety considerations
2018
In the context of health care, risk assessment is the identification, evaluation and estimation of risk related to a particular clinical situation or intervention compared to accepted medical practice standards. The goal of risk assessment is to determine an acceptable level of risk for a given clinical treatment or intervention in association with the provided clinical circumstances for a patient or group of patients. In spite of the inherent challenges related to risk assessment in pediatric cross-sectional imaging, the potential risks of ionizing radiation and sedation/anesthesia in the pediatric population are thought to be quite small. Nevertheless both issues continue to be topics of discussion concerning risk and generate significant anxiety and concern for patients, parents and practicing pediatricians. Recent advances in CT technology allow for more rapid imaging with substantially lower radiation exposures, obviating the need for anesthesia for many indications and potentially mitigating concerns related to radiation exposure. In this review, we compare and contrast the potential risks of CT without anesthesia against the potential risks of MRI with anesthesia, and discuss the implications of this analysis on exam selection, providing specific examples related to neuroblastoma surveillance imaging.
Journal Article
Staging and following common pediatric malignancies: MRI versus CT versus functional imaging
2018
Most pediatric malignancies require some form of cross-sectional imaging, either for staging or response assessment. The majority of these are solid tumors and this review addresses the role of MRI, as well as other cross-sectional and functional imaging techniques, for evaluating the most common pediatric solid tumors. The primary emphasis is on neuroblastoma, hepatoblastoma and Wilms tumor, three of the most common non-central-nervous-system (CNS) pediatric solid tumors encountered in young children. The initial focus will be a review of the imaging techniques and approaches used for diagnosis, staging and early post-treatment response assessment, followed by a discussion of the role surveillance imaging plays in pediatric oncology and a brief review of other emerging imaging techniques. The lessons learned here can be applied to most other pediatric tumors, including rhabdomyosarcoma, Ewing sarcoma and osteosarcoma, as well as germ cell tumors, neurofibromatosis and other rare tumors. Although lymphoma, in particular Hodgkin lymphoma, represents one of the more common pediatric malignancies, this is not discussed in detail here. Rather, many of the lessons that we have learned from lymphoma, specifically with regard to how we integrate both anatomical imaging and functional imaging techniques, is applied to the discussion of the other pediatric solid tumors.
Journal Article
Functional and anatomical imaging in pediatric oncology: which is best for which tumors
2019
Functional imaging techniques are playing an increasingly important role in the management of pediatric cancer. Technological advances have pushed the development of hybrid imaging techniques, including positron emission tomography (PET)/CT, PET/MR and single-photon emission computed tomography (SPECT)/CT. Together with an increasing need to identify surrogate biomarkers for response to novel therapies, the use of functional imaging techniques, which had been reserved primarily for lymphoma patients, is now being recognized as standard of care for the management of many other pediatric solid tumors. The purpose of this review is to summarize recent data describing the use of functional and metabolic imaging strategies for the staging and response assessment of common pediatric solid tumors, and to offer some guidance as to which techniques are most appropriate for which tumor types.
Journal Article
Liposuction for Swelling in Patients with Lymphedema
by
Voss, Stephan D
,
Maclellan, Reid A
,
Greene, Arin K
in
Breast Neoplasms - therapy
,
Female
,
Humans
2017
Lymphedema is frequently a disabling consequence of cancer staging. Liposuction can considerably reduce swelling and may improve lymphatic drainage in an affected limb. This intervention is worthy of additional study.
Journal Article
How we read pediatric PET/CT: indications and strategies for image acquisition, interpretation and reporting
by
Kwatra, Neha
,
Fahey, Frederic H.
,
Grant, Frederick D.
in
Algorithms
,
Attenuation correction
,
Bone cancer
2017
PET/CT plays an important role in the diagnosis, staging and management of many pediatric malignancies. The techniques for performing PET/CT examinations in children have evolved, with increasing attention focused on reducing patient exposure to ionizing radiation dose whenever possible and minimizing scan duration and sedation times, with a goal toward optimizing the overall patient experience.
This review outlines our approach to performing PET/CT, including a discussion of the indications for a PET/CT exam, approaches for optimizing the exam protocol, and a review of different approaches for acquiring the CT portion of the PET/CT exam. Strategies for PACS integration, image display, interpretation and reporting are also provided.
Most practices will develop a strategy for performing PET/CT that best meets their respective needs. The purpose of this article is to provide a comprehensive overview for radiologists who are new to pediatric PET/CT, and also to provide experienced PET/CT practitioners with an update on state-of-the art CT techniques that we have incorporated into our protocols and that have enabled us to make considerable improvements to our PET/CT practice.
Journal Article
Lipodystrophy in methylmalonic acidemia associated with elevated FGF21 and abnormal methylmalonylation
by
Reynolds, James C.
,
Koutsoukos, Stefanos A.
,
Mendelson, Sophia
in
Abdomen
,
Adipose tissue
,
Amino Acid Metabolism, Inborn Errors - complications
2024
A distinct adipose tissue distribution pattern was observed in patients with methylmalonyl-CoA mutase deficiency, an inborn error of branched-chain amino acid (BCAA) metabolism, characterized by centripetal obesity with proximal upper and lower extremity fat deposition and paucity of visceral fat, that resembles familial multiple lipomatosis syndrome. To explore brown and white fat physiology in methylmalonic acidemia (MMA), body composition, adipokines, and inflammatory markers were assessed in 46 patients with MMA and 99 matched controls. Fibroblast growth factor 21 levels were associated with acyl-CoA accretion, aberrant methylmalonylation in adipose tissue, and an attenuated inflammatory cytokine profile. In parallel, brown and white fat were examined in a liver-specific transgenic MMA mouse model (Mmut-/- TgINS-Alb-Mmut). The MMA mice exhibited abnormal nonshivering thermogenesis with whitened brown fat and had an ineffective transcriptional response to cold stress. Treatment of the MMA mice with bezafibrates led to clinical improvement with beiging of subcutaneous fat depots, which resembled the distribution seen in the patients. These studies defined what we believe to be a novel lipodystrophy phenotype in patients with defects in the terminal steps of BCAA oxidation and demonstrated that beiging of subcutaneous adipose tissue in MMA could readily be induced with small molecules.
Journal Article
Belzutifan, a Potent HIF2α Inhibitor, in the Pacak–Zhuang Syndrome
by
Clinton, Catherine M
,
Madden, Jill A
,
Wassner, Ari J
in
Adolescent
,
Adrenal Gland Neoplasms - drug therapy
,
Adrenal Gland Neoplasms - genetics
2021
The integration of genomic testing into clinical care enables the use of individualized approaches to the management of rare diseases. We describe the use of belzutifan, a potent and selective small-molecule inhibitor of the protein hypoxia-inducible factor 2α (HIF2α), in a patient with polycythemia and multiple paragangliomas (the Pacak–Zhuang syndrome). The syndrome was caused in this patient by somatic mosaicism for an activating mutation in
EPAS1
. Treatment with belzutifan led to a rapid and sustained tumor response along with resolution of hypertension, headaches, and long-standing polycythemia. This case shows the application of a targeted therapy for the treatment of a patient with a rare tumor-predisposition syndrome. (Funded by the Morin Family Fund for Pediatric Cancer and Alex’s Lemonade Stand Foundation.)
Pacak–Zhuang syndrome is an inherited tumor-predisposition disorder characterized by polycythemia and paragangliomas. A patient with this disorder had polycythemia, headache, hypertension, and norepinephrine-secreting paragangliomas. She had activating mutations in
HIF2A
. Use of belzutifan, a HIF2α inhibitor, led to paraganglioma regression, normalized hemoglobin levels, and symptom resolution.
Journal Article
Positron emission tomography in the diagnosis and management of primary pediatric lung tumors
by
Weldon, Christopher B
,
Voss, Stephan D
,
Shashi, Kumar K
in
Cancer
,
Ewings sarcoma
,
FDA approval
2024
Primary pediatric lung tumors are uncommon and have many overlapping clinical and imaging features. In contrast to adult lung tumors, these rare pediatric neoplasms have a relatively broad histologic spectrum. Informed by a single-institution 13-year retrospective record review, we present an overview of the most common primary pediatric lung neoplasms, with a focus on the role of positron emission tomography (PET), specifically 18F-fluorodeoxyglucose (FDG) PET and 68Ga-DOTATATE PET, in the management of primary pediatric lung tumors. In addition to characteristic conventional radiographic and cross-sectional imaging findings, knowledge of patient age, underlying cancer predisposition syndromes, and PET imaging features may help narrow the differential. While metastases from other primary malignancies remain the most commonly encountered pediatric lung malignancy, the examples presented in this pictorial essay highlight many of the important conventional radiologic and PET imaging features of primary pediatric lung malignancies.
Journal Article